152 research outputs found

    The effective bandwidth problem revisited

    Full text link
    The paper studies a single-server queueing system with autonomous service and \ell priority classes. Arrival and departure processes are governed by marked point processes. There are \ell buffers corresponding to priority classes, and upon arrival a unit of the kkth priority class occupies a place in the kkth buffer. Let N(k)N^{(k)}, k=1,2,...,k=1,2,...,\ell denote the quota for the total kkth buffer content. The values N(k)N^{(k)} are assumed to be large, and queueing systems both with finite and infinite buffers are studied. In the case of a system with finite buffers, the values N(k)N^{(k)} characterize buffer capacities. The paper discusses a circle of problems related to optimization of performance measures associated with overflowing the quota of buffer contents in particular buffers models. Our approach to this problem is new, and the presentation of our results is simple and clear for real applications.Comment: 29 pages, 11pt, Final version, that will be published as is in Stochastic Model

    Billiards in a general domain with random reflections

    Full text link
    We study stochastic billiards on general tables: a particle moves according to its constant velocity inside some domain DRd{\mathcal D} \subset {\mathbb R}^d until it hits the boundary and bounces randomly inside according to some reflection law. We assume that the boundary of the domain is locally Lipschitz and almost everywhere continuously differentiable. The angle of the outgoing velocity with the inner normal vector has a specified, absolutely continuous density. We construct the discrete time and the continuous time processes recording the sequence of hitting points on the boundary and the pair location/velocity. We mainly focus on the case of bounded domains. Then, we prove exponential ergodicity of these two Markov processes, we study their invariant distribution and their normal (Gaussian) fluctuations. Of particular interest is the case of the cosine reflection law: the stationary distributions for the two processes are uniform in this case, the discrete time chain is reversible though the continuous time process is quasi-reversible. Also in this case, we give a natural construction of a chord "picked at random" in D{\mathcal D}, and we study the angle of intersection of the process with a (d1)(d-1)-dimensional manifold contained in D{\mathcal D}.Comment: 50 pages, 10 figures; To appear in: Archive for Rational Mechanics and Analysis; corrected Theorem 2.8 (induced chords in nonconvex subdomains

    Large deviations for polling systems

    Get PDF
    Related INRIA Research report available at : http://hal.inria.fr/docs/00/07/27/62/PDF/RR-3892.pdfInternational audienceWe aim at presenting in short the technical report, which states a sample path large deviation principle for a resealed process n-1 Qnt, where Qt represents the joint number of clients at time t in a single server 1-limited polling system with Markovian routing. The main goal is to identify the rate function. A so-called empirical generator is introduced, which consists of Q t and of two empirical measures associated with S t the position of the server at time t. The analysis relies on a suitable change of measure and on a representation of fluid limits for polling systems. Finally, the rate function is solution of a meaningful convex program

    Nonlinear spectral calculus and super-expanders

    Get PDF
    Nonlinear spectral gaps with respect to uniformly convex normed spaces are shown to satisfy a spectral calculus inequality that establishes their decay along Cesaro averages. Nonlinear spectral gaps of graphs are also shown to behave sub-multiplicatively under zigzag products. These results yield a combinatorial construction of super-expanders, i.e., a sequence of 3-regular graphs that does not admit a coarse embedding into any uniformly convex normed space.Comment: Typos fixed based on referee comments. Some of the results of this paper were announced in arXiv:0910.2041. The corresponding parts of arXiv:0910.2041 are subsumed by the current pape

    Information geometry and sufficient statistics

    Full text link
    Information geometry provides a geometric approach to families of statistical models. The key geometric structures are the Fisher quadratic form and the Amari-Chentsov tensor. In statistics, the notion of sufficient statistic expresses the criterion for passing from one model to another without loss of information. This leads to the question how the geometric structures behave under such sufficient statistics. While this is well studied in the finite sample size case, in the infinite case, we encounter technical problems concerning the appropriate topologies. Here, we introduce notions of parametrized measure models and tensor fields on them that exhibit the right behavior under statistical transformations. Within this framework, we can then handle the topological issues and show that the Fisher metric and the Amari-Chentsov tensor on statistical models in the class of symmetric 2-tensor fields and 3-tensor fields can be uniquely (up to a constant) characterized by their invariance under sufficient statistics, thereby achieving a full generalization of the original result of Chentsov to infinite sample sizes. More generally, we decompose Markov morphisms between statistical models in terms of statistics. In particular, a monotonicity result for the Fisher information naturally follows.Comment: 37 p, final version, minor corrections, improved presentatio

    Dynamic Pricing and Learning: Historical Origins, Current Research, and New Directions

    Full text link

    Asymptotic analysis of random walks: heavy-tailed distributions

    No full text
    corecore