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ABSTRACT

Nonlinear spectral gaps with respect to uniformly convex normed spaces are shown to satisfy a spectral calculus
inequality that establishes their decay along Cesàro averages. Nonlinear spectral gaps of graphs are also shown to behave
sub-multiplicatively under zigzag products. These results yield a combinatorial construction of super-expanders, i.e., a
sequence of 3-regular graphs that does not admit a coarse embedding into any uniformly convex normed space.
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1. Introduction

Let A= (aij) be an n× n symmetric stochastic matrix and let

1= λ1(A)≥ λ2(A)≥ · · · ≥ λn(A)≥−1

DOI 10.1007/s10240-013-0053-2
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be its eigenvalues. The reciprocal of the spectral gap of A, i.e., the quantity 1
1−λ2(A)

, is the
smallest γ ∈ (0,∞] such that for every x1, . . . , xn ∈R we have

(1)
1
n2

n∑

i=1

n∑

j=1

(xi − xj)
2 ≤ γ

n

n∑

i=1

n∑

j=1

aij(xi − xj)
2.

By summing over the coordinates with respect to some orthonormal basis, a restatement
of (1) is that 1

1−λ2(A)
is the smallest γ ∈ (0,∞] such that for all x1, . . . , xn ∈ L2 we have

(2)
1
n2

n∑

i=1

n∑

j=1

‖xi − xj‖2
2 ≤

γ

n

n∑

i=1

n∑

j=1

aij‖xi − xj‖2
2.

It is natural to generalize (2) in several ways: one can replace the exponent 2 by
some other exponent p > 0 and, much more substantially, one can replace the Euclidean
geometry by some other metric space (X, dX). Such generalizations are standard practice
in metric geometry. For the sake of presentation, it is beneficial to take this generalization
to even greater extremes, as follows. Let X be an arbitrary set and let K :X×X→[0,∞)

be a symmetric function. Such functions are sometimes called kernels in the literature,
and we shall adopt this terminology here. Define the reciprocal spectral gap of A with
respect to K, denoted γ (A,K), to be the infimum over those γ ∈ (0,∞] such that for all
x1, . . . , xn ∈X we have

(3)
1
n2

n∑

i=1

n∑

j=1

K(xi, xj)≤ γ

n

n∑

i=1

n∑

j=1

aijK(xi, xj).

In what follows we will also call γ (A,K) the Poincaré constant of the matrix A with
respect to the kernel K. Readers are encouraged to focus on the geometrically meaningful
case when K is a power of some metric on X, though as will become clear presently, a
surprising amount of ground can be covered without any assumption on the kernel K.

For concreteness we restate the above discussion: the standard gap in the linear
spectrum of A corresponds to considering Poincaré constants with respect to Euclidean
spaces (i.e., kernels which are squares of Euclidean metrics), but there is scope for a the-
ory of nonlinear spectral gaps when one considers inequalities such as (3) with respect to
other geometries. The purpose of this paper is to make progress towards such a theory,
with emphasis on possible extensions of spectral calculus to nonlinear (non-Euclidean)
settings. We apply our results on calculus for nonlinear spectral gaps to construct new
strong types of expander graphs, and to resolve a question of V. Lafforgue [29]. We ob-
tain a combinatorial construction of a remarkable type of bounded degree graphs whose
shortest path metric is incompatible with the geometry of any uniformly convex normed
space in a very strong sense (i.e., coarse non-embeddability). The existence of such graph
families was first discovered by Lafforgue via a tour de force algebraic construction [29].
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Our work indicates that there is hope for a useful and rich theory of nonlinear spec-
tral gaps, beyond the sporadic (though often highly nontrivial) examples that have been
previously studied in the literature.

1.1. Coarse non-embeddability. — A sequence of metric spaces {(Xn, dXn
)}∞n=1 is said

to embed coarsely (with the same moduli) into a metric space (Y, dY) if there exist two
non-decreasing functions α,β : [0,∞)→ [0,∞) such that limt→∞ α(t)=∞, and there
exist mappings fn :Xn → Y, such that for all n ∈N and x, y ∈Xn we have

(4) α
(
dXn

(x, y)
)≤ dY

(
fn(x), fn( y)

)≤ β
(
dXn

(x, y)
)
.

(4) is a weak form of “metric faithfulness” of the mappings fn; a seemingly hum-
ble requirement that can be restated informally as “large distances map uniformly to
large distances”. Nevertheless, this weak notion of embedding (much weaker than, say,
bi-Lipschitz embeddability) has beautiful applications in geometry and group theory;
see [12, 18, 20, 68, 71] and the references therein for examples of such applications.

Since coarse embeddability is a weak requirement, it is quite difficult to prove
coarse non-embeddability. Very few methods to establish such a result are known, among
which is the use of nonlinear spectral gaps, as pioneered by Gromov [19] (other such
methods include coarse notions of metric dimension [18], or the use of metric co-
type [45]. These methods do not seem to be applicable to the question that we study
here). Gromov’s argument is simple: fix d ∈N and suppose that Xn = (Vn,En) are con-
nected d-regular graphs and that dXn

(·, ·) is the shortest-path metric induced by Xn on
Vn. Suppose also that there exist p, γ ∈ (0,∞) such that for every n ∈N and f :Vn → Y
we have

(5)
1
|Vn|2

∑

(u,v)∈Vn×Vn

dY

(
f (u), f (v)

)p ≤ γ

d|Vn|
∑

(x,y)∈En

dY

(
f (x), f ( y)

)p
.

A combination of (4) and (5) yields the bound

1
|Vn|2

∑

(u,v)∈Vn×Vn

α
(
dXn

(u, v)
)p ≤ γβ(1)p.

But, since Xn is a bounded degree graph, at least half of the pairs of vertices (u, v) ∈
Vn×Vn satisfy dXn

(u, v)≥ cd log |Vn|, where cd ∈ (0,∞) depends on the degree d but not
on n. Thus α(cd log |Vn|)p ≤ 2γβ(1)p, and in particular if limn→∞ |Vn| =∞ then we get a
contradiction to the assumption limt→∞ α(t)=∞. Observe in passing that this argument
also shows that the metric space (Xn, dXn

) has bi-Lipschitz distortion Ω(log |Vn|) in Y;
such an argument was first used by Linial, London and Rabinovich [35] (see also [41]) to
show that Bourgain’s embedding theorem [10] is asymptotically sharp.

Assumption (5) can be restated as saying that γ (An, d
p

Y)≤ γ , where An is the nor-
malized adjacency matrix of Xn. This condition can be viewed to mean that the graphs
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{Xn}∞n=1 are “expanders” with respect to (Y, dY). Note that if Y contains at least two points
then (5) implies that {Xn}∞n=1 are necessarily also expanders in the classical sense (see [21,
36] for more on classical expanders).

A key goal in the coarse non-embeddability question is therefore to construct such
{Xn}∞n=1 for which one can prove the inequality (5) for non-Hilbertian targets Y. This
question has been previously investigated by several authors. Matoušek [41] devised an
extrapolation method for Poincaré inequalities (see also the description of Matoušek’s
argument in [6]) which establishes the validity of (5) for every expander when Y = Lp.
Works of Ozawa [57] and Pisier [60, 63] prove (5) for every expander if Y is Banach
space which satisfies certain geometric conditions (e.g. Y can be taken to be a Banach
lattice of finite cotype; see [34] for background on these notions). In [53, 56] additional
results of this type are obtained.

A normed space is called super-reflexive if it admits an equivalent norm which is
uniformly convex. Recall that a normed space (X,‖ · ‖X) is uniformly convex if for every
ε ∈ (0,1) there exists δ = δX(ε) > 0 such that for any two vectors x, y ∈ X with ‖x‖X =
‖ y‖X = 1 and ‖x− y‖X ≥ ε we have ‖ x+y

2 ‖X ≤ 1− δ. The question whether there exists
a sequence of arbitrarily large regular graphs of bounded degree which do not admit a
coarse embedding into any super-reflexive normed space was posed by Kasparov and Yu
in [27], and was solved in the remarkable work of V. Lafforgue [29] on the strengthened
version of property (T) for SL3(F) when F is a non-Archimedian local field (see also [3,
31]). Thus, for concreteness, Lafforgue’s graphs can be obtained as Cayley graphs of
finite quotients of co-compact lattices in SL3(Q p), where p is a prime and Q p is the p-
adic rationals. The potential validity of the same property for finite quotients of SL3(Z)

remains an intriguing open question [29].
Here we obtain a different solution of the Kasparov-Yu problem via a new ap-

proach that uses the zigzag product of Reingold, Vadhan, and Wigderson [67], as well as
a variety of analytic and geometric arguments of independent interest. More specifically,
we construct a family of 3-regular graphs that satisfies (5) for every super-reflexive Banach
space X (where γ depends only on the geometry X); such graphs are called super-expanders.

Theorem 1.1 (Existence of super-expanders). — There exists a sequence of 3-regular graphs

{Gn = (Vn,En)}∞n=1 such that limn→∞ |Vn| = ∞ and for every super-reflexive Banach space (X,

‖ · ‖X) we have

sup
n∈N

γ
(
AGn

,‖ · ‖2
X

)
<∞,

where AGn
is the normalized adjacency matrix of Gn.

As we explained earlier, the existence of super-expanders was previously proved
by Lafforgue [29]. Theorem 1.1 yields a second construction of such graphs (no other
examples are currently known). Our proof of Theorem 1.1 is entirely different from Laf-
forgue’s approach: it is based on a new systematic investigation of nonlinear spectral gaps
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and an elementary procedure which starts with a given small graph and iteratively in-
creases its size so as to obtain the desired graph sequence. In fact, our study of nonlinear
spectral gaps constitutes the main contribution of this work, and the new solution of the
Kasparov-Yu problem should be viewed as an illustration of the applicability of our ana-
lytic and geometric results, which will be described in detail presently.

We state at the outset that it is a major open question whether every expander
graph sequence satisfies (5) for every uniformly convex normed space X. It is also un-
known whether there exist graph families of bounded degree and logarithmic girth that
do not admit a coarse embedding into any super-reflexive normed space; this question is
of particular interest in the context of the potential application to the Novikov conjecture
that was proposed by Kasparov and Yu in [27], since it would allow one to apply Gro-
mov’s random group construction [19] with respect to actions on super-reflexive spaces.

Some geometric restriction on the target space X must be imposed in order for it
to admit a sequence of expanders. Indeed, the relation between nonlinear spectral gaps
and coarse non-embeddability, in conjunction with the fact that every finite metric space
embeds isometrically into 	∞, shows that (for example) X= 	∞ can never satisfy (5) for a
family of graphs of bounded degree and unbounded cardinality. We conjecture that for a
normed space X the existence of such a graph family is equivalent to having finite cotype,
i.e., that there exists ε0 ∈ (0,∞) and n0 ∈N such that any embedding of 	n0∞ into X incurs
bi-Lipschitz distortion at least 1+ ε0; see e.g. [42] for background on this notion.

Our approach can also be used (see Remark 4.4 below) to show that there exist
bounded degree graph sequences which do not admit a coarse embedding into any K-
convex normed space. A normed space X is K-convex1 if there exists ε0 > 0 and n0 ∈N
such that any embedding of 	

n0
1 into X incurs distortion at least 1 + ε0; see [61]. The

question whether such graph sequences exist was asked by Lafforgue [29]. Independently
of our work, Lafforgue [30] succeeded to modify his argument so as to prove the desired
coarse non-embeddability into K-convex spaces for his graph sequence as well.

1.2. Absolute spectral gaps. — The parameter γ (A,K) will reappear later, but for
several purposes we need to first study a variant of it which corresponds to the absolute
spectral gap of a matrix. Define

λ(A)
def= max

i∈{2,...,n}
∣∣λi(A)

∣∣,

and call the quantity 1 − λ(A) the absolute spectral gap of A. Similarly to (2), the re-
ciprocal of the absolute spectral gap of A is the smallest γ+ ∈ (0,∞] such that for all
x1, . . . , xn, y1, . . . , yn ∈ L2 we have

(6)
1
n2

n∑

i=1

n∑

j=1

‖xi − yj‖2
2 ≤

γ+
n

n∑

i=1

n∑

j=1

aij‖xi − yj‖2
2.

1 K-convexity is also equivalent to X having Rademacher type strictly bigger than 1, see [42, 49]. The K-convexity
property is strictly weaker than super-reflexivity, see [22–24, 64].
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Analogously to (3), given a kernel K :X×X→ [0,∞) we can then define γ+(A,K) to
be the infimum over those γ+ ∈ (0,∞] such that for all x1, . . . , xn, y1, . . . , yn ∈X we have

(7)
1
n2

n∑

i=1

n∑

j=1

K(xi, yj)≤ γ+
n

n∑

i=1

n∑

j=1

aijK(xi, yj).

Note that clearly γ+(A,K) ≥ γ (A,K). Additional useful relations between γ (·, ·) and
γ+(·, ·) are discussed in Section 2.2.

1.3. A combinatorial approach to the existence of super-expanders. — In what follows we
will often deal with finite non-oriented regular graphs, which will always be allowed to
have self loops and multiple edges (note that the shortest-path metric is not influenced
by multiple edges or self loops). When discussing a graph G = (V,E) it will always be
understood that V is a finite set and E is a multi-subset of the ordered pairs V× V, i.e.,
each ordered pair (u, v) ∈V×V is allowed to appear in E multiple times.2 We also always
impose the condition (u, v) ∈ E =⇒ (v, u) ∈ E, corresponding to the fact that G is not
oriented. For (u, v) ∈ V × V we denote by E(u, v) = E(v, u) the number of times that
(u, v) appears in E. Thus, the graph G is completely determined by the integer matrix
(E(u, v))(u,v)∈V×V. The degree of u ∈V is degG(u)=∑

v∈V E(u, v). Under this convention
each self loop contributes 1 to the degree of a vertex. For d ∈N, a graph G= (V,E) is
d-regular if degG(u)= d for every u ∈V. The normalized adjacency matrix of a d-regular
graph G= (V,E), denoted AG, is defined as usual by letting its entry at (u, v) ∈V×V be
equal to E(u, v)/d . When discussing Poincaré constants we will interchangeably identify
G with AG. Thus, for examples, we write λ(G)= λ(AG) and γ+(G,K)= γ+(AG,K).

The starting point of our work is an investigation of the behavior of the quantity
γ+(G,K) under certain graph products, the most important of which (for our purposes)
is the zigzag product of Reingold, Vadhan and Wigderson [67]. We argue below that
such combinatorial constructions are well-adapted to controlling the nonlinear quantity
γ+(G,K). This crucial fact allows us to use them in a perhaps unexpected geometric
context.

1.3.1. The iterative strategy. — Reingold, Vadhan and Wigderson [67] introduced
the zigzag product of graphs, and used it to produce a novel deterministic construction of
expanders. Fix n1, d1, d2 ∈N. Let G1 be a graph with n1 vertices which is d1-regular and
let G2 be a graph with d1 vertices which is d2-regular. The zigzag product G1 z©G2 is a
graph with n1d1 vertices and degree d2

2 , for which the following fundamental theorem is
proved in [67].

2 Formally, one can alternatively think of E as a subset of (V× V)×N, with the understanding that for (u, v) ∈
V×V, if we write J= { j ∈N : ((u, v), j) ∈ E} then {(u, v)} × J are the | J| “copies” of (u, v) that appear in E. However, it
will not be necessary to use such formal notation in what follows.
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Theorem 1.2 (Reingold, Vadhan and Wigderson). — There exists f : [0,1]×[0,1]→ [0,1]
satisfying

(8) ∀t ∈ (0,1), lim sup
s→0

f (s, t) < 1,

such that for every n1, d1, d2 ∈ N, if G1 is a graph with n1 vertices which is d1-regular and G2 is a

graph with d2 vertices which is d2-regular then

(9) λ(G1 z©G2)≤ f
(
λ(G1), λ(G2)

)
.

The definition of G1 z©G2 is recalled in Section 8. For the purpose of expander
constructions one does not need to know anything about the zigzag product other than
that it has n1d1 vertices and degree d2

2 , and that it satisfies Theorem 1.2. Also, [67] con-
tains explicit algebraic expressions for functions f for which Theorem 1.2 holds true, but
we do not need to quote them here because they are irrelevant to the ensuing discussion.

In order to proceed it would be instructive to briefly recall how Reingold, Vadhan
and Wigderson used [67] Theorem 1.2 to construct expanders; see also the exposition in
Section 9.2 of [21].

Let H be a regular graph with n0 vertices and degree d0, such that λ(H) < 1. Such
a graph H will be called a base graph in what follows. From (8) we deduce that there exist
ε, δ ∈ (0,1) such that

(10) s ∈ (0, δ) =⇒ f
(
s, λ(H)

)
< 1− ε.

Fix t0 ∈N satisfying

(11) max
{
λ(H)2t0, (1− ε)t0

}
< δ.

For a graph G = (V,E) and for t ∈ N, let Gt be the graph in which an edge
between u, v ∈V is drawn for every walk in G of length t whose endpoints are u, v. Thus
AGt = (AG)t , and if G is d-regular then Gt is dt-regular.

Assume from now on that n0 = d
2t0
0 . Define G1 =H2 and inductively

Gi+1 =Gt0
i z©H.

Then for all i ∈N the graph Gi is well defined and has ni
0 = d

2it0
0 vertices and degree d2

0 .
We claim that λ(Gi)≤max{λ(H)2,1− ε} for all i ∈N. Indeed, there is nothing to prove
for i = 1, and if the desired bound is true for i then (11) implies that λ(Gt0

i )= λ(Gi)
t0 < δ,

which by (9) and (10) implies that λ(Gi+1)≤ f (λ(Gt0
i ), λ(H)) < 1− ε.

Our strategy is to attempt to construct super-expanders via a similar iterative ap-
proach. It turns out that obtaining a non-Euclidean version of Theorem 1.2 (which is
the seemingly most substantial ingredient of the construction of Reingold, Vadhan and
Wigderson) is not an obstacle here due to the following general result.
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Theorem 1.3 (Zigzag sub-multiplicativity). — Let G1 = (V1,E1) be an n1-vertex graph

which is d1-regular and let G2 = (V2,E2) be a d1-vertex graph which is d2-regular. Then every kernel

K :X×X→[0,∞) satisfies

(12) γ+(G1 z©G2,K)≤ γ+(G1,K) · γ+(G2,K)2.

In the special case X=R and K(x, y)= (x− y)2, Theorem 1.3 becomes

(13)
1

1− λ(G1 z©G2)
≤ 1

1− λ(G1)
· 1
(1− λ(G2))2

,

implying Theorem 1.2. Note that the explicit bound on the function f of Theorem 1.2
that follows from (13) coincides with the later bound of Reingold, Trevisan and Vad-
han [66]. In [67] an improved bound for λ(G1 z©G2) is obtained which is better than
the bound of [66] (and hence also (13)), though this improvement in lower-order terms
has not been used (so far) in the literature. Theorem 1.3 shows that the fact that the
zigzag product preserves spectral gaps has nothing to do with the underlying Euclidean
geometry (or linear algebra) that was used in [66, 67]: this is a truly nonlinear phe-
nomenon which holds in much greater generality, and simply amounts to an iteration
of the Poincaré inequality (7).

Due to Theorem 1.3 there is hope to carry out an iterative construction based on
the zigzag product in great generality. However, this cannot work for all kernels since
general kernels can fail to admit a sequence of bounded degree expanders. There are
two major obstacles that need to be overcome. The first obstacle is the existence of a
base graph, which is a substantial issue whose discussion is deferred to Section 1.3.4. The
following subsection describes the main obstacle to our nonlinear zigzag strategy.

1.3.2. The need for a calculus for nonlinear spectral gaps. — In the above description
of the Reingold-Vadhan-Wigderson iteration we tacitly used the identity λ(At) = λ(A)t

(t ∈N) in order to increase the spectral gap of Gi in each step of the iteration. While this
identity is a trivial corollary of spectral calculus, and was thus the “trivial part” of the
construction in [67], there is no reason to expect that γ+(At,K) decreases similarly with t

for non-Euclidean kernels K :X×X→[0,∞). To better grasp what is happening here
let us examine the asymptotic behavior of γ+(At, | · |2) as a function of t (here and in what
follows | · | denotes the absolute value on R).

γ+
(
At, | · |2)= 1

1− λ(At)
= 1

1− λ(A)t
(14)

= 1

1− (1− 1
γ+(A,|·|2) )

t
�max

{
1,

γ+(A, | · |2)
t

}
,

where above, and in what follows, � denotes equivalence up to universal multiplicative
constants (we will also use the notation �,� to express the corresponding inequalities
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up to universal constants). (14) means that raising a matrix to a large power t ∈N corre-
sponds to decreasing its (real) Poincaré constant by a factor of t as long as it is possible to
do so.

For our strategy to work for other kernels K : X×X→ [0,∞) we would like K
to satisfy a “spectral calculus” inequality of this type, i.e., an inequality which ensures
that, if γ+(A,K) is large, then γ+(At,K) is much smaller than γ+(A,K) for sufficiently
large t ∈N. This is, in fact, not the case in general: in Section 9.2 we construct a metric
space (X, dX) such that for each n ∈ N there is a symmetric stochastic matrix An such
that γ+(An, d2

X) ≥ n yet for every t ∈ N there is n0 ∈ N such that for all n ≥ n0 we have
γ+(At

n, d2
X) � γ+(An, d2

X). The question which metric spaces satisfy the desired nonlinear
spectral calculus inequality thus becomes a subtle issue which we believe is of fundamen-
tal importance, beyond the particular application that we present here. A large part of the
present paper is devoted to addressing this question. We obtain rather satisfactory results
which allow us to carry out a zigzag type construction of super-expanders, though we are
still quite far from a complete understanding of the behavior of nonlinear spectral gaps
under graph powers for non-Euclidean geometries.

1.3.3. Metric Markov cotype and spectral calculus. — We will introduce a criterion for
a metric space (X, dX), which is a bi-Lipschitz invariant, and prove that it implies that
for every n,m ∈ N and every n × n symmetric stochastic matrix A the Cesàro averages
1
m

∑m−1
t=0 At satisfy the following spectral calculus inequality.

(15) γ+

(
1
m

m−1∑

t=0

At, d2
X

)
≤C(X)max

{
1,

γ+(A, d2
X)

mε(X)

}
,

where C(X), ε(X) ∈ (0,∞) depend only on the geometry of X but not on m, n and the
matrix A. The fact that we can only prove such an inequality for Cesàro averages rather
than powers does not create any difficulty in the ensuing argument, since Cesàro averages
are compatible with iterative graph constructions based on the zigzag product.

Note that Cesàro averages have the following combinatorial interpretation in the
case of graphs. Given an n-vertex d-regular graph G = (V,E) let Am(G) be the graph
whose vertex set is V and for every t ∈ {0, . . . ,m− 1} and u, v ∈V we draw dm−1−t edges
joining u, v for every walk in G of length t which starts at u and terminates at v. With this
definition AAm(G) = 1

m

∑m−1
t=0 At

G, and Am(G) is mdm−1-regular. We will slightly abuse this
notation by also using the shorthand

(16) Am(A)
def= 1

m

m−1∑

t=0

At,

when A is an n× n matrix.
In the important paper [4] K. Ball introduced a linear property of Banach spaces

that he called Markov cotype 2, and he indicated a two-step definition that could be used
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to extend this notion to general metric spaces. Motivated by Ball’s ideas, we consider the
following variant of his definition.

Definition 1.4 (Metric Markov cotype). — Fix p, q ∈ (0,∞). A metric space (X, dX) has

metric Markov cotype p with exponent q if there exists C ∈ (0,∞) such that for every m, n ∈N,

every n×n symmetric stochastic matrix A= (aij), and every x1, . . . , xn ∈X, there exist y1, . . . , yn ∈X
satisfying

(17)
n∑

i=1

dX(xi, yi)
q + mq/p

n∑

i=1

n∑

j=1

aijdX( yi, yj)
q ≤Cq

n∑

i=1

n∑

j=1

Am(A)ijdX(xi, xj)
q.

The infimum over those C ∈ (0,∞) for which (17) holds true is denoted C(q)
p (X, dX). When q= p we

drop the explicit mention of the exponent and simply say that if (17) holds true with q= p then (X, dX)

has metric Markov cotype p.

Remark 1.5. — We refer to [51, Section 4.1] for an explanation of the background
and geometric intuition that motivates the (admittedly cumbersome) terminology of Def-
inition 1.4. Briefly, the term “cotype” indicates that this definition is intended to serve as
a metric analog of the important Banach space property Rademacher cotype (see [42]). De-
spite this fact, in the forthcoming paper [47] we show, using a clever idea of Kalton [25],
that there exists a Banach space with Rademacher cotype 2 that does not have metric
Markov cotype p for any p ∈ (0,∞). The term “Markov” in Definition 1.4 refers to the
fact that the notion of metric Markov cotype is intended to serve as a certain “dual” to
Ball’s notion of Markov type [4], which is a notion which is defined in terms of the geo-
metric behavior of stationary reversible Markov chains whose state space is a finite subset
of X.

Remark 1.6. — Ball’s original definition [4] of metric Markov cotype is seemingly
different from Definition 1.4, but in [47] we show that Definition 1.4 is equivalent to Ball’s
definition. We introduced Definition 1.4 since it directly implies Theorem 1.7 below.

The link between Definition 1.4 and the desired spectral calculus inequality (15) is
contained in the following theorem, which is proved in Section 3.

Theorem 1.7 (Metric Markov cotype implies nonlinear spectral calculus). — Fix p,C ∈
(0,∞) and suppose that a metric space (X, dX) satisfies

C(2)
p (X, dX)≤C.

Then for every m, n ∈N, every n× n symmetric stochastic matrix A satisfies

γ+
(
Am(A), d2

X

)≤ (45C)2 max
{

1,
γ+(A, d2

X)

m2/p

}
.
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In Section 6.3 we investigate the metric Markov cotype of super-reflexive Banach
spaces, obtaining the following result, whose proof is inspired by Ball’s insights in [4].

Theorem 1.8 (Metric Markov cotype for super-reflexive Banach spaces). — Let (X,‖ · ‖X) be

a super-reflexive Banach space. Then there exists p= p(X) ∈ [2,∞) such that

C(2)
p

(
X,‖ · ‖X

)
<∞,

i.e., (X,‖ · ‖X) has Metric Markov cotype p with exponent 2.

Remark 1.9. — In our forthcoming paper [47] we compute the metric Markov co-
type of additional classes of metric spaces. In particular, we show that all CAT(0) metric
spaces (see [11]), and hence also all complete simply connected Riemannian manifolds
with nonnegative sectional curvature, have Metric Markov cotype 2 with exponent 2.

By combining Theorem 1.7 and Theorem 1.8 we deduce the following result.

Corollary 1.10 (Nonlinear spectral calculus for super-reflexive Banach spaces). — For every

super-reflexive Banach space (X,‖ · ‖X) there exist ε(X),C(X) ∈ (0,∞) such that for every m, n ∈
N and every n× n symmetric stochastic matrix A we have

γ+
(
Am(A),‖ · ‖2

X

)≤C(X)max
{

1,
γ+(A,‖ · ‖2

X)

mε(X)

}
.

Remark 1.11. — In Theorem 6.7 below we present a different approach to proving
nonlinear spectral calculus inequalities in the setting of super-reflexive Banach spaces.
This approach, which is based on bounding the norm of a certain linear operator, has
the advantage that it establishes the decay of the Poincaré constant of the power Am

rather than the Cesàro average Am(A). While this result is of independent geometric
interest, the form of the decay inequality that we are able to obtain has the disadvantage
that we do not see how to use it to construct super-expanders. Moreover, we do not
know how to obtain sub-multiplicativity estimates for such norm bounds under zigzag
products and other graph products such as the tensor product and replacement product
(see Section 1.3.5 below). The approach based on metric Markov cotype also has the
advantage of being applicable to other classes of (non-Banach) metric spaces, in addition
to its usefulness for the Lipschitz extension problem [4, 47].

1.3.4. The base graph. — In order to construct super-expanders using Theorem 1.3
and Corollary 1.10 one must start the inductive procedure with an appropriate “base
graph”. This is a nontrivial issue that raises analytic challenges which are interesting in
their own right.

It is most natural to perform our construction of base graphs in the context of
K-convex Banach spaces, which, as we recalled earlier, is a class of spaces that is strictly
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larger than the class of super-reflexive spaces. The result thus obtained, proved in Sec-
tion 7 using the preparatory work in Section 5.2 and part of Section 6, reads as follows.

Lemma 1.12 (Existence of base graphs for K-convex spaces). — There exists a strictly increasing

sequence of integers {mn}∞n=1 ⊆N satisfying

(18) ∀n ∈N, 2n/10 ≤ mn ≤ 2n,

with the following properties. For every δ ∈ (0,1] there is n0(δ) ∈N and a sequence of regular graphs

{Hn(δ)}∞n=n0(δ)
such that

– |V(Hn(δ))| = mn for every integer n≥ n0(δ).

– For every n ∈ [n0(δ),∞)∩N the degree of Hn(δ), denoted dn(δ), satisfies

(19) dn(δ)≤ e(log mn)
1−δ

.

– For every K-convex Banach space (X,‖ · ‖X) we have γ+(Hn(δ),‖ · ‖2
X) <∞ for all

δ ∈ (0,1) and n ∈N∩ [n0(δ),∞). Moreover, there exists δ0(X) ∈ (0,1) such that

(20) ∀δ ∈ (0, δ0(X)], ∀n ∈ [n0(δ),∞
)∩N, γ+

(
Hn(δ),‖ · ‖2

X

)≤ 93.

The bound 93 in (20) is nothing more than an artifact of our proof and it does not
play a special role in what follows: all that we will need for the purpose of constructing
super-expanders is to ensure that

(21) sup
δ∈(0,δ0(X)]

sup
n∈[n0(δ),∞)∩N

γ+
(
Hn(δ),‖ · ‖2

X

)
<∞,

i.e., for our purposes the upper bound on γ+(Hn(δ),‖ · ‖2
X) can be allowed to depend

on X. Moreover, in the ensuing arguments we can make do with a degree bound that is
weaker than (19): all we need is that

(22) ∀δ ∈ (0,1), lim
n→∞

log dn(δ)

log mn

= 0.

However, we do not see how to prove the weaker requirements (21), (22) in a substantially
simpler way than our proof of the stronger requirements (19), (20).

The starting point of our approach to construct base graphs is the “hypercube
quotient argument” of [28], although in order to apply such ideas in our context we
significantly modify this construction, and apply deep methods of Pisier [61, 62]. A key
analytic challenge that arises here is to bound the norm of the inverse of the hypercube
Laplacian on the vector-valued tail space, i.e., the space of all functions taking values in a
Banach space X whose Fourier expansion is supported on Walsh functions corresponding
to large sets. If X is a Hilbert space then the desired estimate is an immediate consequence
of orthogonality, but even when X is an Lp(μ) space the corresponding inequalities are
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not known. P.-A. Meyer [48] previously obtained Lp bounds for the inverse of the Lapla-
cian on the (real-valued) tail space, but such bounds are insufficient for our purposes. In
order to overcome this difficulty, in Section 5 we obtain decay estimates for the heat semi-
group on the tail space of functions taking values in a K-convex Banach space. We then
use (in Section 7) the heat semigroup to construct a new (more complicated) hypercube
quotient by a linear code which can serve as the base graph of Lemma 1.12.

The bounds on the norm of the heat semigroup on the vector valued tail space (and
the corresponding bounds on the norm of the inverse of the Laplacian) that are proved
in Section 5 are sufficient for the purpose of proving Lemma 1.12, but we conjecture
that they are suboptimal. Section 5 contains analytic questions along these lines whose
positive solution would yield a simplification of our construction of the base graph (see
Remark 7.5).

With all the ingredients in place (Theorem 1.3, Corollary 1.10, Lemma 1.12), the
actual iterative construction of super-expanders in performed in Section 4. Since we need
to construct a single sequence of bounded degree graphs that has a nonlinear spectral
gap with respect to all super-reflexive Banach spaces, our implementation of the zigzag
strategy is significantly more involved than the zigzag iteration of Reingold, Vadhan and
Wigderson (recall Section 1.3.1). This implementation itself may be of independent in-
terest.

1.3.5. Sub-multiplicativity theorems for graph products. — Theorem 1.3 is a special case
of a larger family of sub-multiplicativity estimates for nonlinear spectral gaps with respect
to certain graph products. The literature contains several combinatorial procedures to
combine two graphs, and it turns out that such constructions are often highly compatible
with nonlinear Poincaré inequalities. In Section 8 we further investigate this theme.

The main results of Section 8 are collected in the following theorem (the relevant
terminology is discussed immediately after its statement). Item (II) below is nothing more
than a restatement of Theorem 1.3.

Theorem 1.13. — Fix m, n, n1, d1, d2 ∈N. Suppose that K :X×X→[0,∞) is a kernel

and (Y, dY) is a metric space. Suppose also that G1 = (V1,E1) is a d1-regular graph with n1 vertices

and G2 = (V2,E2) is a d2-regular graph with d1 vertices. Then,

(I) If A= (aij) is an m×m symmetric stochastic matrix and B= (bij) is an n× n symmetric

stochastic matrix then the tensor product A⊗ B satisfies

(23) γ+(A⊗ B,K)≤ γ+(A,K) · γ+(B,K).

(II) The zigzag product G1 z©G2 satisfies

(24) γ+(G1 z©G2,K)≤ γ+(G1,K) · γ+(G2,K)2.
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(III) The derandomized square G1 s©G2 satisfies

(25) γ+(G1 s©G2,K)≤ γ+
(
G2

1,K
) · γ+(G2,K).

(IV) The replacement product G1 r©G2 satisfies

(26) γ+
(
G1 r©G2, d2

Y

)≤ 3(d2 + 1) · γ+
(
G1, d2

Y

) · γ+
(
G2, d2

Y

)2
.

(V) The balanced replacement product G1 b©G2 satisfies

(27) γ+
(
G1 b©G2, d2

Y

)≤ 6 · γ+
(
G1, d2

Y

) · γ+
(
G2, d2

Y

)2
.

Since the (mn)×(mn) matrix A⊗B= (aijbk	) satisfies λ(A⊗B)=max{λ(A), λ(B)},
in the Euclidean case, i.e., K :R×R→[0,∞) is given by K(x, y)= (x− y)2, the product
in the right hand side of (23) can be replaced by a maximum. Lemma 8.2 below contains
a similar improvement of (23) under additional assumptions on the kernel K.

The definitions of the graph products G1 z©G2, G1 s©G2, G1 r©G2, G1 b©G2 are re-
called in Section 8. The replacement product G1 r©G2, which is a (d2+ 1)-regular graph
with n1d1 vertices, was introduced by Gromov in [17], where he applied it iteratively to
hypercubes of logarithmically decreasing size so as to obtain a constant degree graph
which has sufficiently good expansion for his (geometric) application. In [17] Gromov
bounded λ(G1 r©G2) from above by an expression involving only λ(G1), λ(G2), d2. Such
a bound was also obtained by Reingold, Vadhan and Wigderson in [67]. We shall use (26)
in the proof of Theorem 1.1.

The breakthrough of Reingold, Vadhan and Wigderson [67] introduced the zigzag
product, which can be used to construct constant degree expanders; the fact that (24)
holds true for general kernels K, while (26) assumes that dY is a metric and incurs a
multiplicative loss of 3(d2 + 1) can be viewed as an indication why the zigzag product is
a more basic operation than the replacement product.

The balanced replacement product G1 b©G2, which is a 2d2-regular graph with
n1d1 vertices, was introduced by Reingold, Vadhan and Wigderson [67], who bounded
λ(G1 b©G2) from above by an expression involving only λ(G1), λ(G2).

The derandomized square G1 s©G2, which is a d1d2-regular graph with n1 vertices,
was introduced by Rozenman and Vadhan in [69], where they bounded λ(G1 s©G2) from
above by an expression involving only λ(G1), λ(G2). This operation is of a different na-
ture: it aims to create a graph that has spectral properties similar to the square G2

1, but
with significantly fewer edges. In [67, 69] tensor products and derandomized squaring
were used to improve the computational efficiency of zigzag constructions. The general
bounds (23) and (25) can be used to improve the efficiency of our constructions in a simi-
lar manner, but we will not explicitly discuss computational efficiency issues in this paper
(this, however, is relevant to our forthcoming paper [46], where our construction is used
for an algorithmic purpose).
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2. Preliminary results on nonlinear spectral gaps

The purpose of this section is to record some simple and elementary preliminary
facts about nonlinear spectral gaps that will be used throughout this article. One can skip
this section on first reading and refer back to it only when the facts presented here are
used in the subsequent sections.

2.1. The trivial bound for general graphs. — For κ ∈ [0,∞) a kernel ρ : X × X →
[0,∞) is called a 2κ -quasi-semimetric if ρ(x, x)= 0 for every x ∈X and

(28) ∀x, y, z ∈X, ρ(x, y)≤ 2κ
(
ρ(x, z)+ ρ(z, y)

)
.

The key examples of 2κ -quasi-semimetrics are of the form ρ = d
p

X, where dX :X×X→
[0,∞) is a semimetric and p ∈ [1,∞), in which case κ = p − 1 (in fact, all quasi-
semimetrics are obtained in this way; see [26, Section 2] and [38, 58]).

Lemma 2.1. — Fix n, d ∈ N and κ ∈ [0,∞). Let G = (V,E) be a d-regular connected

graph with n vertices. Then for every 2κ -quasi-semimetric ρ :X×X→[0,∞) we have

(29) γ (G, ρ)≤ 2κ−1dnκ+1.

If in addition G is not a bipartite graph then

(30) γ+(G, ρ)≤ 22κdnκ+1.

Proof. — For every x, y ∈ V choose distinct {ux,y

0 = x, u
x,y

1 , . . . , u
x,y

mx,y−1, ux,y
mx,y
= y} ⊆ V

such that (u
x,y

i , u
x,y

i−1) ∈ E for every i ∈ {1, . . . ,mx,y}, and (u
x,y

i , u
x,y

i−1) �= (u
x,y

j , u
x,y

j−1) for distinct
i, j ∈ {1, . . . ,mx,y}. Fixing f :V→X, a straightforward inductive application of (28) yields

ρ
(

f (x), f ( y)
)≤ (2mx,y)

κ

mx,y∑

i=1

ρ
(

f
(
u

x,y

i−1

)
, f
(
u

x,y

i

))

≤ (2n)κ

mx,y∑

i=1

ρ
(

f
(
u

x,y

i−1

)
, f
(
u

x,y

i

))
.

Thus

1
n2

∑

(x,y)∈V×V

ρ
(

f (x), f ( y)
)≤ (2n)κ

n2

∑

(x,y)∈V×V

mx,y∑

i=1

ρ
(

f
(
u

x,y

i−1

)
, f
(
u

x,y

i

))

≤ (2n)κ
(

n

2

)

n2

∑

(a,b)∈E

ρ
(

f (a), f (b)
)
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≤ (2n)κnd

2
· 1

nd

∑

(a,b)∈E

ρ
(

f (a), f (b)
)
.

This proves (29). To prove (30) suppose that G is connected but not bipartite. Then for
every x, y ∈ V there exists a path of odd length joining x and y whose total length is at
most 2n and in which each edge is repeated at most once (indeed, being non-bipartite, G
contains an odd cycle c; the desired path can be found by considering the shortest paths
joining x and y with c). Let {wx,y

0 = x,w
x,y

1 , . . . ,w
x,y

m−1,w
x,y

2	x,y+1 = y} ⊆V be such a path. For
every f , g :V→X we have

∑

(x,y)∈V×V

ρ
(

f (x), g( y)
)

≤
∑

(x,y)∈V×V

(4	x,y + 2)κ

(
ρ
(

f
(
w

x,y

0

)
, g
(
w

x,y

1

))

+
	x,y∑

i=1

(
ρ
(
g
(
w

x,y

2i−1

)
, f
(
w

x,y

2i

))+ ρ
(

f
(
w

x,y

2i

)
, g
(
w

x,y

2i+1

))))

≤ (4n)κ · n2
∑

(a,b)∈E

ρ
(

f (a), g(b)
)
,

implying (30). �

Remark 2.2. — For n ∈N let Cn denote the n-cycle and let C◦
n denote the n-cycle

with self loops (thus C◦
n is a 3-regular graph). It follows from Lemma 2.1 that γ (Cn, ρ) �

(2n)κ+1 and γ+(C◦
n, ρ) � (4n)κ+1 for every 2κ -quasi-semimetric. If (X, dX) is a metric

space and p ∈ [1,∞) then one can refine the above arguments using the symmetry of the
circle to get the improved bound

(31) γ+
(
C◦

n, d
p

X

)
� (n+ 1)p

p2p
.

We omit the proof of (31) since the improved dependence on p is not used in the ensuing
discussion.

2.2. γ versus γ+. — By taking f = g in the definition of γ+(·, ·) one immediately
sees that γ (A,K)≤ γ+(A,K) for every kernel K :X×X→[0,∞) and every symmetric
stochastic matrix A. Here we investigate additional relations between these quantities.

Lemma 2.3. — Fix κ ∈ [0,∞) and let ρ : X×X→ [0,∞) be a 2κ -quasi-semimetric.

Then for every symmetric stochastic matrix A we have

(32)
2

2κ+1 + 1
γ

((
0 A
A 0

)
, ρ

)
≤ γ+(A, ρ)≤ 2γ

((
0 A
A 0

)
, ρ

)
.
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Proof. — Fix f , g : {1, . . . , n}→X and define h : {1, . . . ,2n}→X by

h(i)
def=
{

f (i) if i ∈ {1, . . . , n},
g(i− n) if i ∈ {n+ 1, . . . ,2n}.

Suppose that A= (aij) is an n× n symmetric stochastic matrix. Then

1
n2

n∑

i=1

n∑

j=1

ρ
(

f (i), g( j)
)= 1

n2

n∑

i=1

n∑

j=1

ρ
(
h(i), h( j + n)

)

≤ 1
2n2

2n∑

i=1

2n∑

j=1

ρ
(
h(i), h( j)

)

≤ 2γ (( 0 A
A 0 ), ρ)

2n

2n∑

i=1

2n∑

j=1

(
0 A
A 0

)

ij

ρ
(
h(i), h( j)

)

= 2γ (( 0 A
A 0 ), ρ)

n

n∑

i=1

n∑

j=1

aijρ
(
f (i), g( j)

)
.

This proves the rightmost inequality in (32). Note that for this inequality the quasimetric
inequality (28) was not used, and therefore ρ can be an arbitrarily kernel.

To prove the leftmost inequality in (32) we argue as follows. Fix h : {1, . . . ,2n}→X
and define f , g : {1, . . . , n}→X by f (i)= h(i) and g(i)= h(i+ n) for every i ∈ {1, . . . , n}.
Then

n∑

i=1

n∑

j=1

ρ
(
h(i), h( j)

)≤ 1
n

n∑

i=1

n∑

j=1

n∑

	=1

2κ
(
ρ
(
h(i), h(	+ n)

)
(33)

+ ρ
(
h( j), h(	+ n)

))

= 2κ+1
n∑

i=1

n∑

j=1

ρ
(
f (i), g( j)

)
.

Similarly,
n∑

i=1

n∑

j=1

ρ
(
h(i+ n), h( j + n)

)
(34)

≤ 1
n

n∑

i=1

n∑

j=1

n∑

	=1

2κ
(
ρ
(
h(i+ n), h(	)

)+ ρ
(
h( j + n), h(	)

))

= 2κ+1
n∑

i=1

n∑

j=1

ρ
(

f (i), g( j)
)
.
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Hence,

1
(2n)2

2n∑

i=1

2n∑

j=1

ρ
(
h(i), h( j)

)

= 1
(2n)2

n∑

i=1

n∑

j=1

ρ
(
h(i), h( j)

)+ 1
(2n)2

n∑

i=1

n∑

j=1

ρ
(
h(i+ n), h( j + n)

)

+ 1
(2n)2

n∑

i=1

n∑

j=1

ρ
(
h(i), h( j + n)

)+ 1
(2n)2

n∑

i=1

n∑

j=1

ρ
(
h(i+ n), h( j)

)

(33)∧(34)≤ 2κ+1 + 1
2n2

n∑

i=1

n∑

j=1

ρ
(
f (i), g( j)

)

≤ (2κ+1 + 1)γ+(A, ρ)

2n

n∑

i=1

n∑

j=1

aijρ
(

f (i), g( j)
)

= (2κ+1 + 1)γ+(A, ρ)

2
· 1

2n

2n∑

i=1

2n∑

j=1

(
0 A
A 0

)

ij

ρ
(
h(i), h( j)

)
,

which is precisely the leftmost inequality in (32). �

Lemma 2.4. — Fix κ ∈ [0,∞) and let ρ : X×X→ [0,∞) be a 2κ -quasi-semimetric.

Then for every symmetric stochastic matrix A we have

(35) γ

((
0 Am(A)

Am(A) 0

)
, ρ

)
≤ (

2κ+2 + 1
)
γ

(
Am

(
0 A
A 0

)
, ρ

)
.

Proof. — Suppose that A= (aij) is an n× n symmetric stochastic matrix. It suffices
to show that for every h : {1, . . . ,2n}→X and every m ∈N we have

2n∑

i=1

2n∑

j=1

Am

(
0 A
A 0

)

ij

ρ
(
h(i), h( j)

)
(36)

≤ (
2κ+2 + 1

) 2n∑

i=1

2n∑

j=1

(
0 Am(A)

Am(A) 0

)

ij

ρ
(
h(i), h( j)

)
.

For simplicity of notation write B= (bij)
def= (

0 A
A 0

)
. Then

(37) Am(B)= 1
m

I+ 1
m

�(m−1)/4�∑

s=1

B4s + 1
m

�(m−3)/4�∑

s=0

B2(2s+1) + 1
m

�(m−2)/2�∑

s=0

B2s+1.
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Observe that

t ∈ 2N− 1 =⇒
(

0 A
A 0

)t

=
(

0 At

At 0

)
.

Hence,

(38)
1
m

�(m−2)/2�∑

s=0

B2s+1 =
(

0 1
m

∑�(m−2)/2�
s=0 A2s+1

1
m

∑�(m−2)/2�
s=0 A2s+1 0

)
.

For every s ∈N, using the fact that B2s−1 and B2s+1 are symmetric and stochastic, we have

2n∑

i=1

2n∑

j=1

(
B4s
)

ij
ρ
(
h(i), h( j)

)
(39)

≤
2n∑

i=1

2n∑

j=1

( 2n∑

	=1

(
B2s−1

)
i	

(
B2s+1

)
	j

2κ
(
ρ
(
h(i), h(	)

)+ ρ
(
h(	), h( j)

)))

= 2κ

2n∑

a=1

2n∑

b=1

(
0 A2s−1 +A2s+1

A2s−1 +A2s+1 0

)

ab

ρ
(
h(a), h(b)

)
.

Similarly, for every s ∈N∪ {0},
2n∑

i=1

2n∑

j=1

(
B2(2s+1)

)
ij
ρ
(
h(i), h( j)

)
(40)

≤ 2κ+1
2n∑

a=1

2n∑

b=1

(
0 A2s+1

A2s+1 0

)

ab

ρ
(
h(a), h(b)

)
.

It follows from (37), (38), (39) and (40) that

(41)
2n∑

i=1

2n∑

j=1

Am(B)ijρ
(
h(i), h( j)

)≤
2n∑

i=1

2n∑

j=1

(
0 C
C 0

)

ij

ρ
(
h(i), h( j)

)
,

where

C def= 1
m

I+ 2κ

m

�(m−1)/4�∑

s=1

(
A2s−1 +A2s+1

)

+ 2κ+1

m

�(m−3)/4�∑

s=0

A2s+1 + 1
m

�(m−2)/2�∑

s=0

A2s+1.
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To deduce (36) from (41) it remains to observe that

∀i, j ∈ {1, . . . , n}, Cij ≤
(
2κ+2 + 1

)
Am(A)ij. �

The following two lemmas are intended to indicate that if one is only interested
in the existence of super-expanders (rather than estimating the nonlinear spectral gap of
a specific graph of interest) then the distinction between γ (·, ·) and γ+(·, ·) is not very
significant.

Lemma 2.5. — Fix n, d ∈ N and let G = (V,W,E) be a d-regular bipartite graph such

that |V| = |W| = n. Then there exists a 2d-regular graph H = (V,F) for which every kernel K :
X×X→[0,∞) satisfies γ+(H,K)≤ 2γ (G,K).

Proof. — Fix an arbitrary bijection σ :V→W. The new edges F on the vertex set
V are given by

∀(u, v) ∈V×V, F(u, v)
def= E

(
u, σ (v)

)+ E
(
σ(u), v

)
.

Thus (V,F) is a 2d-regular graph.
Given f , g :V→X define φ1, φ2 :V∪W→X by

φ1(x)
def=
{

f (x) if x ∈V,

g(σ−1(x)) if x ∈W,
and φ2(x)

def=
{

g(x) if x ∈V,

f (σ−1(x)) if x ∈W.

Then,

1
n2

∑

(u,v)∈V×V

K
(

f (u), g(v)
)

≤ 1
(2n)2

∑

(x,y)∈(V∪W)×(V∪W)

(
K
(
φ1(x),φ1( y)

)+K
(
φ2(x),φ2( y)

))

≤ γ (G,K)

2nd

∑

(x,y)∈(V×W)∪(W×V)

E(x, y)
(
K
(
φ1(x),φ1( y)

)+K
(
φ2(x),φ2( y)

))

= γ (G,K)

nd

∑

(u,v)∈V×V

(
E
(
u, σ (v)

)+ E
(
σ(u), v

))
K
(

f (u), g(v)
)

= 2γ (G,K)

n · (2d)

∑

(u,v)∈F

K
(

f (u), g(v)
)
.

�

Lemma 2.6. — Fix n, d ∈N and let G= (V,E) be a d-regular graph with |V| = 2n. Then

there exists a 4d-regular graph G′ = (V′,E′) with |V′| = n such that for every κ ∈ (0,∞) and every

ρ :X×X→[0,∞) which is a 2κ -quasi-semimetric we have γ+(G′, ρ)≤ 2κ+2γ (G, ρ).
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Proof. — Write V = V′ ∪ V′′, where V′,V′′ ⊆ V are disjoint subsets of cardinality
n, and fix an arbitrary bijection σ : V′ → V′′. We first define a bipartite graph H =
(V′,V′′,F) by

(42) ∀(x, y) ∈V′ ×V′′, F(x, y)
def= E(x, y)+ E

(
x, σ−1( y)

)+ d1{y=σ(x)},

where F is extended to V′′ × V′ by imposing symmetry. This makes H be a 2d-regular
bipartite graph. We shall now estimate γ (H, ρ). For every f :V→X we have

1
(2n)2

∑

(u,v)∈V×V

ρ
(

f (u), f (v)
)

(43)

≤ γ (G, ρ)

2nd

( ∑

(u,v)∈(V′×V′′)∪(V′′×V′)

E(u, v)ρ
(

f (u), f (v)
)

+
∑

(u,v)∈V′×V′
E(u, v)ρ

(
f (u), f (v)

)+
∑

(u,v)∈V′′×V′′
E(u, v)ρ

(
f (u), f (v)

))
.

Now, using the fact that ρ is a 2κ -quasi-semimetric we have
∑

(u,v)∈V′×V′
E(u, v)ρ

(
f (u), f (v)

)
(44)

≤
∑

(u,v)∈V′×V′
2κE(u, v)

(
ρ
(

f (u), f
(
σ(v)

))+ ρ
(

f
(
σ(v)

)
, f (v)

))

= 2κ
∑

(x,y)∈V′×V′′
E
(
x, σ−1( y)

)
ρ
(

f (x), f ( y)
)+ 2κd

∑

z∈V′
ρ
(

f
(
σ(z)

)
, f (z)

)
.

Similarly,
∑

(u,v)∈V′′×V′′
E(u, v)ρ

(
f (u), f (v)

)
(45)

≤ 2κ
∑

(x,y)∈V′′×V′
E
(
x, σ ( y)

)
ρ
(

f (x), f ( y)
)+ 2κd

∑

z∈V′
ρ
(

f (z), f
(
σ(z)

))
.

Recalling (42), we conclude from (43), (44) and (45) that

1
(2n)2

∑

(u,v)∈(V′∪V′′)×(V′∪V′′)

ρ
(

f (u), f (v)
)≤ 2κ+1γ (G, ρ)

(2n) · (2d)

∑

(x,y)∈F

ρ
(

f (x), f ( y)
)
.

Hence γ (H, ρ)≤ 2κ+1γ (G, ρ). The desired assertion now follows from Lemma 2.5. �
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2.3. Edge completion. — In the ensuing arguments we will sometimes add edges to
a graph in order to ensure that it has certain desirable properties, but we will at the same
time want to control the Poincaré constants of the resulting denser graph. The following
very easy facts will be useful for this purpose.

Lemma 2.7. — Fix n, d1, d2 ∈ N. Let G1 = (V,E1) and G2 = (V,E2) be two n-vertex

graphs on the same vertex set with E2 ⊇ E1. Suppose that G1 is d1-regular and G2 is d2-regular. Then

for every kernel K :X×X→[0,∞) we have

max
{

γ (G2,K)

γ (G1,K)
,
γ+(G2,K)

γ+(G1,K)

}
≤ d2

d1
.

Proof. — One just has to note that for every f , g :V→X we have

1
nd2

∑

(x,y)∈E2

K
(

f (x), g( y)
)≥ 1

nd2

∑

(x,y)∈E1

K
(

f (x), g( y)
)

= d1

d2
· 1

nd1

∑

(x,y)∈E1

K
(

f (x), g( y)
)
.

�

Definition 2.8 (Edge completion). — Fix two integers D ≥ d ≥ 2. Let G = (V,E) be a

d-regular graph. The D-edge completion of G, denoted CD(G), is defined as a graph on the same

vertex set V, with edges E(CD(G)) ⊇ E defined as follows. Write D = md + r, where m ∈ N and

r ∈ {0, . . . , d − 1}. Then E(CD(G)) is obtained from E by duplicating each edge m times and adding

r self loops to each vertex in V, i.e.,

(46) ∀(x, y) ∈V×V, E
(
CD(G)

)
(x, y)

def= mE(x, y)+ r1{x=y}.

This definition makes CD(G) be a D-regular graph.

Lemma 2.9. — Fix two integers D≥ d ≥ 2 and let G= (V,E) be a d-regular graph. Then

for every kernel K :X×X→[0,∞) we have

(47) max
{

γ (CD(G),K)

γ (G,K)
,
γ+(CD(G),K)

γ+(G,K)

}
≤ 2.

Proof. — Write |V| = n and D= md + r, where m ∈N and r ∈ {0, . . . , d − 1}. For
every f , g :V→X we have

1
nD

∑

(x,y)∈E(CD(G))

K
(

f (x), g( y)
)

(46)= 1
nd

∑

(x,y)∈V×V

mdE(x, y)+ rd1{x=y}
md + r

K
(

f (x), g( y)
)
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≥ 1
nd

∑

(x,y)∈V×V

m

m+ 1
E(x, y)K

(
f (x), g( y)

)≥ 1
2
· 1

nd

∑

(x,y)∈E

K
(

f (x), g( y)
)
.

�

3. Metric Markov cotype implies nonlinear spectral calculus

Our goal here is to prove Theorem 1.7. We start with an analogous statement that
treats the parameter γ (·, ·) rather than γ+(·, ·).

Lemma 3.1 (Metric Markov cotype implies the decay of γ ). — Fix C, ε ∈ (0,∞), q ∈
[1,∞), m, n ∈ N and an n× n symmetric stochastic matrix A = (aij). Suppose that (X, dX) is a

metric space such that for every x1, . . . , xn ∈X there exist y1, . . . , yn ∈X satisfying

(48)
n∑

i=1

dX(xi, yi)
q + mε

n∑

i=1

n∑

j=1

aijdX( yi, yj)
q ≤Cq

n∑

i=1

n∑

j=1

Am(A)ijdX(xi, xj)
q.

Then

(49) γ
(
Am(A), d

q

X

)≤ (3C)q max
{

1,
γ (A, d

q

X)

mε

}
.

Proof. — Write B= (bij)=Am(A). If γ (B, d
q

X)≤ (3C)q then (49) holds true, so we
may assume from now on that γ (B, d

q

X) > (3C)q. Fix

(50) (3C)q < γ < γ
(
B, d

q

X

)
.

By the definition of γ (B, d
q

X) there exist x1, . . . , xn ∈X such that

(51)
1
n2

n∑

i=1

n∑

j=1

dX(xi, xj)
q >

γ

n

n∑

i=1

n∑

j=1

bijdX(xi, xj)
q.

Let y1, . . . , yn ∈X satisfy (48). By the triangle inequality, for every i, j ∈ {1, . . . , n} we have

(52) dX(xi, xj)
q ≤ 3q−1

(
dX(xi, yi)

q + dX( yi, yj)
q + dX( yj, xj)

q
)
.

By averaging (52) we get the following estimate.

1
n2

n∑

i=1

n∑

j=1

dX( yi, yj)
q ≥ 1

3q−1n2

n∑

i=1

n∑

j=1

dX(xi, xj)
q − 2

n

n∑

i=1

dX(xi, yi)
q(53)

(51)
>

γ

3q−1n

n∑

i=1

n∑

j=1

bijdX(xi, xj)
q − 2

n

n∑

i=1

dX(xi, yi)
q
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(48)≥ 3γ mε

(3C)qn

n∑

i=1

n∑

j=1

aijdX( yi, yj)
q

+
(

3γ

(3C)qn
− 2

n

) n∑

i=1

dX(xi, yi)
q

(50)≥ 3γ mε

(3C)qn

n∑

i=1

n∑

j=1

aijdX( yi, yj)
q.

At the same time, by the definition of γ (A, d
q

X) we have

(54)
1
n2

n∑

i=1

n∑

j=1

dX( yi, yj)
q ≤ γ (A, d

q

X)

n

n∑

i=1

n∑

j=1

aijdX( yi, yj)
q.

By contrasting (54) with (53) and letting γ ↗ γ (B, d
p

X) we deduce that

γ
(
Am(A), d

q

X

)= γ
(
B, d

q

X

)≤ 3q−1Cq γ (A, d
q

X)

mε
. �

The special case q= 2 of the following theorem implies Theorem 1.7.

Theorem 3.2 (Metric Markov cotype implies the decay of γ+). — Fix C, ε ∈ (0,∞), q ∈
[1,∞), m, n ∈ N and an n× n symmetric stochastic matrix A = (aij). Suppose that (X, dX) is a

metric space such that for every x1, . . . , x2n ∈X there exist y1, . . . , y2n ∈X satisfying

2n∑

i=1

dX(xi, yi)
q + mε

2n∑

i=1

2n∑

j=1

(
0 A
A 0

)

ij

dX( yi, yj)
q(55)

≤Cq

2n∑

i=1

2n∑

j=1

Am

(
0 A
A 0

)

ij

dX(xi, xj)
q.

Then

(56) γ+
(
Am(A), d

q

X

)≤ (45C)q max
{

1,
γ+(A, d

q

X)

mε

}
.

Proof. — By Lemma 2.3 and Lemma 2.4 we have

γ+
(
Am(A), d

q

X

) (32)≤ 2γ

((
0 Am(A)

Am(A) 0

)
, d

q

X

)
(57)

(35)≤ 2
(
2q+1 + 1

)
γ

(
Am

(
0 A
A 0

)
, d

q

X

)
.
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At the same time, an application of Lemma 3.1 and Lemma 2.3 yields the estimate

γ

(
Am

(
0 A
A 0

)
, d

q

X

)
≤ (3C)q max

{
1,

γ (( 0 A
A 0 ), d

q

X)

mε

}
(58)

(32)≤ (3C)q max
{

1,
2q + 1

2
· γ+(A, d

q

X)

mε

}
.

The desired estimate (56) is a consequence of (57) and (58). �

4. An iterative construction of super-expanders

Our goal here is to prove the existence of super-expanders as stated in Theo-
rem 1.1, assuming the validity of Lemma 1.12, Corollary 1.10 and Theorem 1.13. These
ingredients will then be proved in the subsequent sections.

In order to elucidate the ensuing construction, we phrase it in the setting of ab-
stract kernels, though readers are encouraged to keep in mind that it will be used in the
geometrically meaningful case of super-reflexive Banach spaces.

Lemma 4.1 (Initial zigzag iteration). — Fix d,m, t ∈N satisfying

(59) td2(t−1) ≤ m,

and fix a d-regular graph G0 = (V,E) with |V| = m. Then for every j ∈N there exists a regular graph

Ft
j = (Vt

j,Et
j) of degree d2 and with |Vt

j | = mj such that the following holds true. If K :X×X→
[0,∞) is a kernel such that γ+(G0,K) <∞ then also γ+(Ft

j,K) <∞ for all j ∈ N. Moreover,

suppose that C, γ ∈ [1,∞) and ε ∈ (0,1) satisfy

(60) t ≥ (
2Cγ 2

)1/ε
,

and that the kernel K is such that every finite regular graph G satisfies the nonlinear spectral calculus

inequality

(61) γ+
(
At(G),K

)≤C max
{

1,
γ+(G,K)

tε

}
.

Suppose furthermore that

(62) γ+(G0,K)≤ γ.

Then

sup
j∈N

γ+
(
Ft

j,K
)≤ 2Cγ 2.
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Proof. — Set Ft
1

def= Cd2(G0), where we recall the definition of the edge completion
operation as discussed in Section 2.3. Thus Ft

1 has m vertices and degree d2. Assume in-
ductively that we defined Ft

j to be a regular graph with mj vertices and degree d2. Then
the Cesàro average At(Ft

j) has mj vertices and degree td2(t−1) (recall the discussion preced-
ing (16)). It follows from (59) that the degree of At(Ft

j) is at most m, so we can form the
edge completion Cm(At(Ft

j)), which has degree m, and we can therefore form the zigzag
product

(63) Ft
j+1

def= (
Cm

(
At

(
Ft

j

)))
z©G0.

Thus Ft
j+1 has mj+1 vertices and degree d2, completing the inductive construction. Using

Theorem 1.3 and Lemma 2.9, it follows inductively that if K : X × X → [0,∞) is a
kernel such that γ+(G0,K) <∞ then also γ+(Ft

j ,K) <∞ for all j ∈N.
Assuming the validity of (62), by Lemma 2.9 we have

γ+
(
Ft

1,K
)= γ+

(
Cd2(G0),K

) (47)≤ 2γ+(G0,K)
(62)≤ 2γ.

We claim that for every j ∈N,

(64) γ+
(
Ft

j ,K
)≤ 2Cγ 2.

Assuming the validity of (64) for some j ∈N, by Theorem 1.3 we have

γ+
(
Ft

j+1,K
) (12)∧(63)≤ γ+

(
Cm

(
At

(
Ft

j

)))
γ+(G0,K)2

(47)∧(62)≤ 2γ+
(
At

(
Ft

j

)
,K

)
γ 2

(61)≤ 2Cγ 2 max
{

1,
γ+(Ft

j ,K)

tε

}

(64)≤ 2Cγ 2 max
{

1,
2Cγ 2

tε

}
(60)≤ 2Cγ 2. �

Corollary 4.2 (Intermediate construction for super-reflexive Banach spaces). — For every k ∈N
there exist regular graphs {Fj(k)}∞j=1 and integers {dk}∞k=1, {nj(k)}j,k∈N ⊆ N, where {nj(k)}∞j=1 is a

strictly increasing sequence, such that Fj(k) has degree dk and nj(k) vertices, and the following condition

holds true. For every super-reflexive Banach space (X,‖ · ‖X),

∀j, k ∈N, γ+
(
Fj(k),‖ · ‖2

X

)
<∞,

and moreover there exists k(X) ∈N such that

sup
j,k∈N

k≥k(X)

γ+
(
Fj(k),‖ · ‖2

X

)≤ k(X).
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Proof. — We shall use here the notation of Lemma 1.12. For every k ∈N choose an
integer n(k)≥ n0(1/k) (recall that n0(1/k) was introduced in Lemma 1.12) such that

(65) ke2(k−1)(log mn(k))
1− 1

k ≤ mn(k).

By (19), it follows from (65) that dn(k)(1/k), i.e., the degree of the graph Hn(k)(1/k), satisfies

kd
2(k−1)

n(k) ≤ mn(k) =
∣∣V
(
Hn(k)(1/k)

)∣∣,

where here, and in what follows, V(G) denotes the set of vertices of a graph G. We
can therefore apply Lemma 4.1 with the parameters t = k, d = dn(k)(1/k), m= mn(k) and
G0 =Hn(k)(1/k). Letting {Fj(k)}∞j=1 denote the resulting sequence of graphs, we define

dk
def= (

dn(k)(1/k)
)2

and nj(k)
def= (mn(k))

j.

If (X,‖ · ‖X) is a super-reflexive Banach space then it is in particular K-convex
(see [61]). Recalling the parameter δ0(X) of Lemma 1.12, we have

k ≥ 1
δ0(X)

=⇒ γ+
(
Hn(k)(1/k),‖ · ‖2

X

)≤ 93.

It also follows from Corollary 1.10 that there exists C(X) ∈ [1,∞) and ε(X) ∈ (0,1) for
which every finite regular graph G satisfies

(66) ∀t ∈N, γ+
(
At(G),‖ · ‖2

X

)≤C(X)max
{

1,
γ+(G,‖ · ‖2

X)

tε(X)

}
.

We may therefore apply Lemma 4.1 with C = C(X), ε = ε(X) and γ = 93 to deduce
that if we define

k(X)
def=
⌈

max
{

1
δ0(X)

,
(
2C(X) · 93

)1/ε(X)
,2C(X) · 96

}⌉
,

then for every j ∈N,

k ≥ k(X) =⇒ sup
j∈N

γ+
(
Fj(k),‖ · ‖2

X

)≤ 2C(X) · 96 ≤ k(X). �

Corollary 4.2 provides a sequence of expanders with respect to a fixed super-
reflexive Banach space (X,‖ · ‖X), but since the sequence of degrees {dk}∞k=1 may be
unbounded (this is indeed the case in our construction), we still do not have one sequence
of bounded degree regular graphs that are expanders with respect to every super-reflexive
Banach space. This is achieved in the following crucial lemma.
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Lemma 4.3 (Main zigzag iteration). — Let {dk}∞k=1 be a sequence of integers and for each k ∈N
let {nj(k)}∞j=1 be a strictly increasing sequence of integers. For every j, k ∈N let Fj(k) be a regular graph

of degree dk with nj(k) vertices. Suppose that K is a family of kernels such that

(67) ∀K ∈K , ∀j, k ∈N, γ+
(
Fj(k),K

)
<∞.

Suppose also that the following two conditions hold true.

– For every K ∈K there exists k1(K) ∈N such that

(68) sup
j,k∈N

k≥k1(K)

γ+
(
Fj(k),K

)≤ k1(K).

– For every K ∈ K there exists k2(K) ∈ N such that every regular graph G satisfies the

following spectral calculus inequality.

(69) ∀t ∈N, γ+
(
At(G),K

)≤ k2(K)max
{

1,
γ+(G,K)

t1/k2(K)

}
.

Then there exists d ∈N and a sequence of d-regular graphs {Hi}∞i=1 with

lim
i→∞

∣∣V(Hi)
∣∣=∞

and

(70) ∀K ∈K , sup
j∈N

γ+(Hj,K) <∞.

Proof. — In what follows, for every k ∈ N it will be convenient to introduce the
notation

(71) Mk
def= (

2k3
)k

.

With this, define

(72) j(k)
def=min

{
j ∈N : nj(k) > 2d2

1 +Mk+1d
2(Mk+1−1)

k+1

}
,

and

(73) Wk
def= Fj(k)(k).

We will next define for every k ∈ N an integer 	(k) ∈ N ∪ {0} and a sequence of
regular graphs W0

k ,W1
k , . . . ,W	(k)

k , along with an auxiliary integer sequence {hi(k)}	(k)i=0 ⊆
N. Set

(74) W0
k

def=Wk and h0(k)
def= k.
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Define 	(1)= 0. For every integer k > 1 set

(75) h1(k)
def=min

{
h ∈N : nj(h)(h)≥ dh0(k)

}
.

Observe that necessarily h1(k) < h0(k)= k. Indeed, if h1(k)≥ k then

dk

(75)
> nj(k−1)(k − 1)

(72)
> Mkd

2(Mk−1)

k

(71)≥ dk,

a contradiction. By the definition of h1(k) we know that nj(h1(k))(h1(k))≥ dh0(k), so we may
form the edge completion Cnj(h1(k))(h1(k))(W

0
k ). Since the number of vertices of Wh1(k) is

nj(h1(k))(h1(k)), which is the same as the degree of Cnj(h1(k))(h1(k))(W
0
k ), we can define

W1
k

def=AMh1(k)

(
Cnj(h1(k))(h1(k))

(
W0

k

)
z©Wh1(k)

)
.

The degree of W1
k equals

Mh1(k)d
2(Mh1(k)−1)

h1(k)
.

Assume inductively that k, i > 1 and we have already defined the graph Wi−1
k and

the integer hi−1(k), such that the degree of Wi−1
k equals

(76) Mhi−1(k)d
2(Mhi−1(k)−1)

hi−1(k)
.

If hi−1(k) = 1 then conclude the construction, setting 	(k) = i − 1. If hi−1(k) > 1
then we proceed by defining

(77) hi(k)
def=min

{
h ∈N : nj(h)(h)≥Mhi−1(k)d

2(Mhi−1(k)−1)

hi−1(k)

}
.

Observe that

(78) hi(k) < hi−1(k).

Indeed, if hi(k)≥ hi−1(k) then

Mhi−1(k)d
2(Mhi−1(k)−1)

hi−1(k)

(77)
> nj(hi−1(k)−1)(hi−1(k)− 1)

(72)
> 2d2

1 +Mhi−1(k)d
2(Mhi−1(k)−1)

hi−1(k)
,

a contradiction. Since the degree of Wi−1
k is given in (76), which by (77) is at most

nj(hi(k))(hi(k)), we may form the edge completion Cnj(hi (k))
(hi(k))(W

i−1
k ). The degree of the

resulting graph is nj(hi(k))(hi(k)), which, by (73), equals the number of vertices of Whi(k). We
can therefore define

(79) Wi
k

def=AMhi (k)

(
Cnj(hi (k))

(hi(k))

(
Wi−1

k

)
z©Whi(k)

)
.

The degree of Wi
k equals Mhi(k)d

2(Mhi (k)
−1)

hi(k)
, thus completing the inductive step.
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Due to (78) the above procedure must eventually terminate, and by definition
h	(k)(k)= 1. Since h0(k)= k, it follows that

(80) ∀k ∈N, 	(k)≤ k.

We define

Hk
def=W	(k)

k .

The degree of Hk equals d
def= 2d2

1 for all k ∈N. Also, by construction we have
∣∣V(Hk)

∣∣= ∣∣V
(
W	(k)

k

)∣∣

≥ ∣∣V
(
W	(k)−1

k

)∣∣≥ · · · ≥ ∣∣V
(
W0

k

)∣∣ (74)∧(73)= nj(k)(k)
(72)≥ Mk+1.

Thus limk→∞ |V(Hk)| =∞. It remains to prove that for every kernel K ∈K we have

(81) sup
k∈N

γ+(Hk,K) <∞.

To prove (81) we start with the following crucial estimate, which holds for every
k ∈N and i ∈ {1, . . . , 	(k)}.

γ+
(
Wi

k,K
) (69)∧(79)≤ k2(K)max

{
1,

γ+(Cnj(hi (k))
(hi(k))(W

i−1
k ) z©Whi(k),K)

M1/k2(K)

hi(k)

}
(82)

(12)∧(47)∧(73)≤ k2(K)max
{

1,
2γ+(Wi−1

k ,K)γ+(Fj(hi(k))(hi(k)),K)2

M1/k2(K)

hi(k)

}
.

In particular, it follows from (82) that the following crude estimate holds true.

(83) γ+
(
Wi

k,K
)≤ 2k2(K)γ+

(
Wi−1

k ,K
)
γ+
(
Fj(hi(k))

(
hi(k)

)
,K

)2
.

A recursive application of (83) yields the estimate

γ+(Hk,K)= γ+
(
W	(k)

k ,K
)

≤ (
2k2(K)

)	(k)
γ+
(
W0

k ,K
) 	(k)∏

i=1

γ+
(
Fj(hi(k))

(
hi(k)

)
,K

)2
.

Due to the finiteness assumption (67), it follows that

(84) ∀k ∈N, γ+(Hk,K) <∞.

In order to prove (81) we will need to apply (82) more carefully. To this end set

(85) k3(K)
def=max

{
k1(K), k2(K)

}
,
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and fix k > k3(K). We will now prove by induction on i ∈ {0, . . . , 	(k)} that

(86) hi(k) > k3(K) =⇒ γ+
(
Wi

k,K
)≤ k3(K).

If i = 0 then h0(k)= k > k3(K)≥ k1(K), so by our assumption (68),

γ+
(
W0

k ,K
) (74)∧(73)= γ+

(
Fj(k)(k),K

) (68)≤ k1(K)≤ k3(K).

Assume inductively that i ∈ {1, . . . , 	(k)} satisfies

(87) hi(k) > k3(K).

By (78) and the inductive hypothesis we therefore have

(88) γ+
(
Wi−1

k ,K
)≤ k3(K).

Hence,

γ+
(
Wi

k,K
) (82)∧(87)∧(68)∧(88)≤ k2(K)max

{
1,

2k3(K)k1(K)2

M1/k2(K)

hi(k)

}

(85)∧(87)≤ k3(K)max
{

1,
2k3(K)3

M1/k3(K)

k3(K)

}
(71)= k3(K).

This completes the inductive proof of (86).
Define

(89) i0(k)
def=max

{
i ∈ {0, . . . , 	(k)− 1

} : hi(k) > k3(K)
}
.

Note that since h0(k)= k, the maximum in (89) is well defined. By (86) we have

(90) γ+
(
Wi0(k)

k ,K
)≤ k3(K).

A recursive application of (83), combined with (90), yields the estimate

(91) γ+(Hk,K)≤ k3(K)

	(k)∏

i=i0(k)+1

(
2k2(K)γ+

(
Fj(hi(k))

(
hi(k)

)
,K

)2)
.

By (89), for every i ∈ {i0(k)+ 1, . . . , 	(k)} we have hi(k)≤ k3(K). Due to the strict mono-
tonicity appearing in (78), it follows that the number of terms in the product appearing
in (91) is at most k3(K), and therefore

(92) γ+(Hk,K)≤ k3(K)
(
2k2(K)

)k3(K)
k3(K)∏

r=1

γ+
(
Fj(r)(r),K

)2
.
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We have proved that (92) holds true for every integer k > k3(K). Note that the upper
bound in (92) is independent of k, so in combination with (84) this completes the proof
of (81). �

Proof of Theorem 1.1. — Lemma 4.3 applies when K consists of all K : X×X→
[0,∞) of the form K(x, y)= ‖x − y‖2

X, where (X,‖ · ‖X) ranges over all super-reflexive
Banach spaces. Indeed, hypotheses (67) and (68) of Lemma 4.3 are nothing more than
the assertions of Corollary 4.2. Hypothesis (69) of Lemma 4.3 holds true as well since, by
Corollary 1.10, every super-reflexive Banach space (X,‖ · ‖X) satisfies (66), so we may
take

k2(X)
def=max

{
C(X),

1
ε(X)

}
.

Let d ∈ N and {Hi}∞i=1 be the output of Lemma 4.3. Recalling the notation of
Remark 2.2, C◦

d denotes the cycle of length d with self loops, and C9 denotes the cycle of
length 9 without self loops. For each i ∈N, since Hi is d-regular, we may form the zigzag
product Hi z©C◦

d , which is a 9-regular graph with d|V(Hi)| vertices. We can therefore
consider the graph

H∗
i

def= (
Hi z©C◦

d

)
r©C9.

Thus {H∗
i }∞i=1 are 3-regular graphs with limi→∞ |V(H∗

i )| = ∞. By Theorem 1.3 and
part (IV) of Theorem 1.13, for every super-reflexive Banach space (X,‖ · ‖X) we have

γ+
(
H∗

i ,‖ · ‖2
X

)≤ 9γ+
(
Hi,‖ · ‖2

X

)
γ+
(
C◦

d,‖ · ‖2
X

)2
γ+
(
C9,‖ · ‖2

X

)2
.

By Lemma 2.1 we have γ+(C◦
d,‖ · ‖2

X)≤ 12d2 and γ+(C9,‖ · ‖2
X)≤ 648 (since C9 is not

bipartite). Therefore γ+(H∗
i ,‖ · ‖2

X) � d4γ+(Hi,‖ · ‖2
X), so due to (70) the graphs {H∗

i }∞i=1
satisfy the conclusion of Theorem 1.1. �

Remark 4.4. — V. Lafforgue asked [29] whether there exists a sequence of bounded
degree graphs {Gk}∞k=1 that does not admit a coarse embedding (with the same moduli)
into any K-convex Banach space. A positive answer to this question follows from our
methods. Independently of our work, Lafforgue [30] managed to solve this problem as
well, so we only sketch the argument. An inspection of Lafforgue’s proof in [29] shows
that his method produces regular graphs {Hj(k)}j,k∈N such that for each k ∈N the graphs
{Hj(k)}j∈N have degree dk , their cardinalities are unbounded, and for every K-convex
Banach space (X,‖ · ‖X) there is some k ∈ N for which supj∈N γ+(Hj(k),‖ · ‖2

X) <∞.
The problem is that the degrees {dk}k∈N are unbounded, but this can be overcome as
above by applying the zigzag product with a cycle with self loops. Indeed, define Gj(k)=
Hj(k) z©C◦

dk
. Then Gj(k) is 9-regular, and as argued in the proof of Theorem 1.1, we still

have supj∈N γ+(Gj(k),‖ ·‖2
X) <∞. To get a single sequence of graphs that does not admit
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a coarse embedding into any K-convex Banach space, fix a bijection ψ = (a, b) : N→
N×N, and define Gm =Ga(m)(b(m)). The graphs Gm all have degree 9. If X is K-convex
then choose k ∈ N as above. If we let mj ∈ N be such that ψ(mj) = ( j, k) then we have
shown that the graphs {Gmj

}∞j=1 are arbitrarily large, have bounded degree, and satisfy
supj∈N γ+(Gmj

,‖ · ‖2
X) <∞. The argument that was presented in Section 1.1 implies that

{Gm}∞m=1 do not embed coarsely into X.

5. The heat semigroup on the tail space

This section contains estimates that will be crucially used in the proof of
Lemma 1.12, in addition to geometric results and open questions of independent inter-
est. We start the discussion by recalling some basic definitions, and setting some (mostly
standard) notation on vector-valued Fourier analysis. Let (X,‖ · ‖X) be a Banach space.
We assume throughout that X is a Banach space over the complex scalars, though, by a
standard complexification argument, our results hold also for Banach spaces over R.

Given a measure space (Ω,μ) and p ∈ [1,∞), we denote as usual by Lp(μ,X) the
space of all measurable f :Ω →X satisfying

‖f ‖Lp(μ,X)
def=
(∫

Ω

‖f ‖p

Xdμ

)1/p

<∞.

When X=C we use the standard notation Lp(μ)= Lp(μ,C). When Ω is a finite set we
denote by Lp(Ω,X) the space Lp(μ,X), where μ is the normalized counting measure
on Ω .

For n ∈N and A⊆ {1, . . . , n}, the Walsh function WA : Fn
2 →{−1,1} is defined by

WA(x)
def= (−1)

∑
j∈A xj .

Any f : Fn
2 →X has the expansion

f =
∑

A⊆{1,...,n}
f̂ (A)WA,

where

f̂ (A)
def= 1

2n

∑

x∈Fn
2

f (x)WA(x) ∈X.

For ϕ : Fn
2 →C and f : Fn

2 →X, the convolution ϕ ∗ f : Fn
2 →X is defined as usual by

ϕ ∗ f (x)
def= 1

2n

∑

w∈Fn
2

ϕ(x−w)f (w)=
∑

A⊆{1,...,n}
ϕ̂(A)̂f (A)WA(x).
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For k ∈ {1, . . . , n} and p ∈ [1,∞] we let L≥k
p (Fn

2,X) denote the subspace of

Lp(Fn
2,X) consisting of those f : Fn

2 →X that satisfy f̂ (A)= 0 for all A⊆ {1, . . . , n} with
|A|< k.

Let e1, . . . , en be the standard basis of Fn
2. For j ∈ {1, . . . , n} define ∂j f : Fn

2 →X by

∂j f (x)
def= f (x)− f (x+ ej)

2
.

Thus

∂j f =
∑

A⊆{1,...,n}
j∈A

f̂ (A)WA,

and

�f
def=

n∑

j=1

∂j f =
∑

A⊆{1,...,n}
|A| f̂ (A)WA.

For every z ∈C we then have

(93) ez�f =
∑

A⊆{1,...,n}
ez|A| f̂ (A)WA =Rz ∗ f ,

where

(94) Rz(x)
def=

n∏

j=1

(
1+ ez(−1)xj

)= (
1− ez

)‖x‖1
(
1+ ez

)n−‖x‖1
,

and we identify Fn
2 with {0,1}n ⊆Rn. Hence, for every x ∈ Fn

2 we have

(95) ez�f (x)=
∑

w∈Fn
2

(
1− ez

2

)‖x−w‖1
(

1+ ez

2

)n−‖x−w‖1

f (w).

In particular,

(96) ∀x, y ∈ Fn
2,

(
ez�δx

)
( y)=

(
1− ez

2

)‖x−y‖1
(

1+ ez

2

)n−‖x−y‖1

,

where δx(w)
def= 1{x=w} is the Kronecker delta.

Given n ∈N and f : Fn
2 →X, the Rademacher projection [43] of f is defined by

Rad( f )
def=

n∑

j=1

f̂
({ j})W{j}.
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The K-convexity constant of X is defined [43] by

K(X)
def= sup

n∈N
‖Rad‖L2(Fn

2,X)→L2(Fn
2,X).

If K(X) <∞ then X is said to be K-convex. Pisier’s deep K-convexity theorem [61]
asserts that X is K-convex if and only if it does not contain copies of {	n

1}∞n=1 with distortion
arbitrarily close to 1, i.e., for all n ∈N we have

inf
T∈L (	n

1,X)
‖T‖	n

1→X ·
∥∥T−1

∥∥
T(	n

1)→	n
1
= 1,

where L (	n
1,X) denotes the space of linear operators T : 	n

1 →X (and we use the con-
vention ‖T−1‖T(	n

1)→	n
1
=∞ if T is not injective).

Our main result in this section is the following theorem.

Theorem 5.1 (Decay of the heat semigroup on the tail space). — For every K, p ∈ (1,∞)

there are A(K, p) ∈ (0,1) and B(K, p),C(K, p) ∈ (2,∞) such that for every K-convex Banach

(X,‖ · ‖X) with K(X)≤K, every k, n ∈N and every t ∈ (0,∞),

(97)
∥∥e−t�

∥∥
L≥k

p (Fn
2,X)→L≥k

p (Fn
2,X)
≤C(K, p)e−A(K,p)k min{t,tB(K,p)}.

The fact that Theorem 5.1 assumes that X is K-convex is not an artifact of our
proof: we have, in fact, the following converse statement.

Theorem 5.2. — Let X be a Banach space (X,‖ · ‖X) for which exist k ∈N, p ∈ (1,∞)

and t ∈ (0,∞) such that

(98) sup
n∈N

∥∥e−t�
∥∥

L≥k
p (Fn

2,X)→L≥k
p (Fn

2,X)
< 1.

Then X is K-convex.

Remark 5.3. — We conjecture that any K-convex Banach space satisfies (98) for
every k ∈ N, p ∈ (1,∞) and t ∈ (0,∞). Theorem 5.1 implies (98) if k or t are large
enough, but, due to the factor C(K, p) in (97), it does not imply (98) in its entirety. The
factor C(K, p) in (97) does not have impact on the application of Theorem 5.1 that we
present here; see Section 7.

5.1. Warmup: the tail space of scalar valued functions. — Before passing to the proofs
of Theorem 5.1 and Theorem 5.2, we address separately the classical scalar case
X = C, since it already exhibits interesting open questions. The problem was studied
by P.-A. Meyer [48] who proved Lemma 5.4 below. We include its proof here since it is
not stated explicitly in this way in [48], and moreover Meyer studies this problem with Fn

2
replaced by Rn equipped with the standard Gaussian measure (the proof in the discrete
setting does not require anything new. We warn the reader that the proof in [48] contains
an inaccurate duality argument).
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Lemma 5.4 (P.-A. Meyer). — For every p ∈ [2,∞) there exists cp ∈ (0,∞) such that for

every k ∈N, every tail space function f ∈ L≥k
p (Fn

2) and every time t ∈ (0,∞),

(99)
∥∥e−t�f

∥∥
Lp(Fn

2)
≤ e−cpk min{t,t2}‖ f ‖Lp(Fn

2)
.

Hence,

(100) ‖�f ‖Lp(Fn
2)

� cp

√
k · ‖ f ‖Lp(Fn

2)
.

Proof. — The estimate (100) follows immediately from (99) as follows.

‖ f ‖Lp(Fn
2)
=
∥∥∥∥
∫ ∞

0
e−t��fdt

∥∥∥∥
Lp(Fn

2)

≤
∫ ∞

0

∥∥e−t��f
∥∥

Lp(Fn
2)

dt

(99)≤
(∫ 1

0
e−cpkt2dt +

∫ ∞

1
e−cpktdt

)
‖�f ‖Lp(Fn

2)
�
‖�f ‖Lp(Fn

2)

cp

√
k

.

To prove (99), we may assume that ‖f ‖Lp(Fn
2)
= 1. Since p≥ 2, it follows that

(101)
∥∥e−t�f

∥∥
L2(Fn

2)
≤ e−kt‖ f ‖L2(Fn

2)
≤ e−kt‖ f ‖Lp(Fn

2)
= e−kt.

By classical hypercontractivity estimates [7, 8], if we define

(102) q
def= 1+ e2t(p− 1),

then

(103)
∥∥e−t�f

∥∥
Lq(Fn

2)
≤ ‖ f ‖Lp(Fn

2)
= 1.

Since p ∈ [2, q] we may consider θ ∈ [0,1] given by

(104)
1
p
= θ

2
+ 1− θ

q
.

Now,
∥∥e−t�f

∥∥
Lp(Fn

2)
≤ ∥∥e−t�f

∥∥θ

L2(Fn
2)
· ∥∥e−t�f

∥∥1−θ

Lq(Fn
2)

(105)

(101)∧(103)≤ e−ktθ (102)∧(104)= exp
(
−2(p− 1)kt(e2t − 1)

p(e2t(p− 1)− 1)

)
.

By choosing cp appropriately, the desired estimate (99) is a consequence (105). �

Remark 5.5. — For the purpose of the geometric applications that are contained
in the present paper we need to understand the vector-valued analogue of Lemma 5.4,
i.e., Theorem 5.1. Nevertheless, the following interesting questions seem to be open for
scalar-valued functions.
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(1) Can one prove Lemma 5.4 also when p ∈ (1,2)? Note that while � and e−t� are
self-adjoint operators, one needs to understand the dual norm on L≥k

p (Fn
2,R)∗

in order to use duality here.
(2) What is the correct asymptotic dependence on k in (100)? Specifically, can (100)

be improved to

(106) ‖�f ‖p �p k‖ f ‖p?

(3) As a potential way to prove (106), can one improve (99) to

(107) f ∈ L≥k
p

(
Fn

2

) =⇒ ∀t ∈ (0,∞),
∥∥e−t�f

∥∥
Lp(Fn

2)
≤ e−cpkt‖ f ‖Lp(Fn

2)
?

As some evidence for (107), P. Cattiaux proved (private communication) the case k = 1,
p = 4 of (107) when the heat semigroup on Fn

2 is replaced by the Ornstein-Uhlenbeck
semigroup on Rn. Specifically, let γn be the standard Gaussian measure on Rn and con-
sider the Ornstein-Uhlenbeck operator L=�− x · ∇ . Cattiaux proved that there exists
a universal constant c ∈ (0,∞) such that for every f ∈ L4(γn,R) and every t ∈ (0,∞),

(108)
∫

Rn

fdγn = 0 =⇒ ∥∥e−tLf
∥∥

L4(γn)
≤ e−ct‖ f ‖L4(γn).

We shall now present a sketch of Cattiaux’s proof of (108). By differentiating at t = 0,
integrating by parts, and using the semigroup property, one sees that (108) is equivalent
to the following assertion.

(109)
∫

Rn

fdγn = 0 =⇒
∫

Rn

f 4dγn �
∫

Rn

f 2‖∇f ‖2
2dγn.

The Gaussian Poincaré inequality (see [9, 32]) applied to f 2 implies that

∫

Rn

f 4dγn −
(∫

Rn

f 2dγn

)2

�
∫

Rn

f 2‖∇f ‖2
2dγn.

The desired inequality (109) would therefore follow from

(110)
∫

Rn

fdγn = 0 =⇒
(∫

Rn

f 2dγn

)2

�
∫

Rn

f 2‖∇f ‖2
2dγn.

Fix M ∈ (0,∞) that will be determined later. Define φM :R→R by

(111) φM(x)
def=

⎧
⎪⎪⎨

⎪⎪⎩

0 if |x| ≤M,

2(x−M) if x ∈ [M,2M],
2(x+M) if x ∈ [−2M,−M],
x if |x| ≥ 2M.



38 MANOR MENDEL, ASSAF NAOR

Since |φ′| ≤ 2, an application of the Gaussian Poincaré inequality to φ ◦ f yields the
estimate

(112)
∫

Rn

(φ ◦ f )2dγn −
(∫

Rn

φ ◦ fdγn

)2 (111)

�
∫

{|f |≥M}
‖∇f ‖2

2dγn.

Now,

(113)
∫

Rn

(φ ◦ f )2dγn

(111)≥
∫

{|f |≥2M}
f 2dγn ≥

∫

Rn

f 2dγn − 4M2.

Also,

(114)
∫

{|f |≥M}
‖∇f ‖2

2dγn ≤ 1
M2

∫

Rn

f 2‖∇f ‖2
2dγn.

If in addition
∫

Rn fdγn = 0 then

(115)

∣∣∣∣
∫

Rn

φ ◦ fdγn

∣∣∣∣=
∣∣∣∣
∫

Rn

(φ ◦ f − f )dγn

∣∣∣∣
(111)=

∣∣∣∣
∫

{|f |≤2M}
(φ ◦ f − f )dγn

∣∣∣∣≤ 4M.

Hence, by (112), (113), (114) and (115),

(116)
∫

Rn

fdγn = 0 =⇒
∫

Rn

f 2dγn � M2 + 1
M2

∫

Rn

f 2‖∇f ‖2
2dγn.

The optimal choice of M in (116) is

M=
(∫

Rn

f 2‖∇f ‖2
2dγn

)1/4

,

yielding the desired inequality (110). It would be interesting to generalize the above ar-
gument so as to extend (108) to the setting of functions in all the Hermite tail spaces
{L≥k

p (γn,R)}k∈N (i.e., functions whose Hermite coefficients of degree less than k vanish).

5.2. Proof of Theorem 5.1. — For every m ∈ {1, . . . , n} consider the level-m Rade-
macher projection given by

Radm( f )
def=

∑

A⊆{1,...,n}
|A|=m

f̂ (A)WA.

Thus Rad1 =Rad and for every z ∈C we have

ez� =
n∑

m=0

ezmRadm.

We shall use the following deep theorem of Pisier [61].
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Theorem 5.6 (Pisier). — For every K, p ∈ (1,∞) there exist φ = φ(K, p) ∈ (0,π/4) and

M = M(K, p) ∈ (2,∞) such that for every Banach space X satisfying K(X) ≤ K, n ∈ N and

z ∈C, we have

(117) |arg z| ≤ φ =⇒ ∥∥e−z�
∥∥

Lp(Fn
2,X)→Lp(Fn

2,X)
≤M.

One can give explicit bounds on M, φ in terms of p and K; see [42]. We will require
the following standard corollary of Theorem 5.6. Define

a= π

tanφ
,

so that all the points in the open segment joining a − iπ and a + iπ have argument at
most φ. Then

(118) ‖Radm‖Lp(Fn
2,X)→Lp(Fn

2,X) ≤Meam.

Indeed,

1
2π

∫ π

−π

eimte−(a+it)�dt = 1
2π

∫ π

−π

eimt

n∑

k=0

e−(a+it)kRadkdt = e−maRadm.

Now (118) is deduced by convexity as follows.

‖Radm‖Lp(Fn
2,X)→Lp(Fn

2,X) ≤ ema

2π

∫ π

−π

∥∥e−(a+it)�
∥∥

Lp(Fn
2,X)→Lp(Fn

2,X)
dt ≤Mema.

It follows that

(119) �z≥ 2a =⇒ ∥∥e−z�
∥∥

L≥k
p (Fn

2,X)→L≥k
p (Fn

2,X)
≤ M

1− e−a
e−k�z/2 ≤ M

1− e−a
e−ka.

Indeed,
∥∥e−z�

∥∥
L≥k

p (Fn
2,X)→L≥k

p (Fn
2,X)

=
∥∥∥∥

n∑

m=k

e−zmRadm

∥∥∥∥
L≥k

p (Fn
2,X)→L≥k

p (Fn
2,X)

(118)≤
n∑

m=k

e−m�zMeam ≤M
n∑

m=k

e−m�z/2 = M
1− e−�z/2

e−k�z/2

≤ M
1− e−a

e−k�z/2.
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FIG. 1. — The sector V⊆C.

The ensuing argument is a quantitative variant of the proof of the main theorem
of Pisier in [62]. Let

r
def= 2

√
a2 + π 2,

and define

V def= {
z ∈C : |z| ≤ r ∧ |arg z| ≤ φ

}
.

The set V⊆C is depicted in Figure 1.
Denote

V0
def= {

x± ix tanφ : x ∈ [0,2a)
}
,

and

V1
def= {

reiθ : |θ | ≤ φ
}
,

so that we have the disjoint union ∂V=V0 ∪V1.
Fix t ∈ (0,2a). Let μt be the harmonic measure corresponding to V and t, i.e.,

μt is the Borel probability measure on ∂V such that for every bounded analytic function
f :V→C we have

(120) f (t)=
∫

∂V
f (z)dμt(z).

We refer to [16] for more information on this topic and the ensuing discussion. For con-
creteness, it suffices to recall here that for every Borel set E ⊆ ∂V the number μt(E) is
the probability that the standard 2-dimensional Brownian motion starting at t exits V
at E. Equivalently, by conformal invariance, μt is the push-forward of the normalized
Lebesgue measure on the unit circle S1 under the Riemann mapping from the unit disk
to V which takes the origin to t.
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Denote

θt
def= μt(V1),

and write

(121) μt = (1− θt)μ
0
t + θtμ

1
t ,

where μ0
t ,μ

1
t are probability measures on V0,V1, respectively. We will use the following

bound on θt , whose proof is standard.

Lemma 5.7. — For every t ∈ (0,2a) we have

(122) θt ≥ 1
2

(
t

r

) π
2φ

.

Proof. — This is an exercise in conformal invariance. Let D = {z ∈ C : |z| ≤ 1}
denote the unit disk centered at the origin, and let D+ denote the intersection of D with
the right half plane {z ∈C : �z≥ 0}. The mapping h1 :V→D+ given by

h1(z)
def=
(

z

r

) π
2φ

is a conformal equivalence between V and D+. Let Q+ = {x+ iy : x, y ∈ [0,∞)} denote
the positive quadrant. The Möbius transformation h2 :D+ →Q+ given by

h2(z)
def=−i · z+ i

z− i

is a conformal equivalence between D+ and Q+. The mapping h3(z)
def= z2 is a conformal

equivalence between Q+ and the upper half-plane H+ = {z ∈C : �(z)≥ 0}. Finally, the
Möbius transformation

h4(z)
def= z− i

z+ i

is a conformal equivalence between H+ and D. By composing these mappings, we obtain
the following conformal equivalence between V and D.

F(z)
def= (h4 ◦ h3 ◦ h2 ◦ h1)(z)= −(( z

r
)

π
2φ + i)2 − i(( z

r
)

π
2φ − i)2

−(( z

r
)

π
2φ + i)2 + i(( z

r
)

π
2φ − i)2

.

Therefore, the mapping G :V→D given by

G(z)
def= F(z)− F(t)

1− F(t)F(z)
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is a conformal equivalence between V and D with G(t)= 0.
By conformal invariance, θt is the length of the arc G(V1)⊆ ∂D= S1, divided by

2π . Writing s= h1(t)= (t/r)π/(2φ) ∈ (0,1), we have

G(2a+ i2π)= −4s(s2 − 1)− i((s2 − 1)2 − 4s2)

(s2 + 1)2
,

and

G(2a− i2π)= 4s(s2 − 1)− i((s2 − 1)2 − 4s2)

(s2 + 1)2
.

It follows that if s ≥√2− 1 then θt ≥ 1
2 , and if s <

√
2− 1 then

(123) θt = 1
π

arcsin
(

4s(1− s2)

(s2 + 1)2

)
≥ s

2
,

where the rightmost inequality in (123) follows from elementary calculus. �

Lemma 5.8. — For every ε ∈ (0,1) there exists a bounded analytic function Ψ t
ε : V→ C

satisfying

– Ψ t
ε (t)= 1,

– |Ψ t
ε (z)| = ε for every z ∈V0,

– |Ψ t
ε (z)| = 1

ε(1−θt )/θt
for every z ∈V1.

Proof. — The proof is the same as the proof of Claim 2 in [62]. We sketch it briefly
for the sake of completeness. Consider the strip S = {z ∈ C : �(z) ∈ [0,1]} and for
j ∈ {0,1} let Sj = {z ∈C : �(z)= j}. As explained in [62, Claim 1], there exists a confor-
mal equivalence h : V→ S such that h(t)= θt , h(V0)= S0 and h(V1)= S1. Now define
Ψε(z)

def= ε
1− h(z)

θt . �

Proof of Theorem 5.1. — Take t ∈ (0,∞). If t ≥ 2a then by (119) we have

(124)
∥∥e−t�

∥∥
L≥k

p (Fn
2,X)→L≥k

p (Fn
2,X)
≤ M

1− e−a
e−kt/2.

Suppose therefore that t ∈ (0,2a). Fix ε ∈ (0,1) that will be determined later, and let Ψ t
ε

be the function from Lemma 5.8. Then

e−t� = Ψ t
ε (t)e

−t� (120)=
∫

∂V
Ψ t

ε (z)e
−z�dμt(z)(125)

(121)= (1− θt)

∫

V0

Ψ t
ε (z)e

−z�dμ0
t (z)+ θt

∫

V1

Ψ t
ε (z)e

−z�dμ1
t (z).
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Hence, using (125) in combination with Lemma 5.8, Theorem 5.6 and (119), we deduce
that

∥∥e−t�
∥∥

L≥k
p (Fn

2,X)→L≥k
p (Fn

2,X)
≤ (1− θt)εM+ θt

ε(1−θt)/θt
· Me−ka

1− e−a
(126)

(122)≤ εM+ Me−ka

1− e−a
· 1
ε2(r/t)π/(2φ)−1

.

We now choose

ε = exp
(
−1

2

(
t

r

) π
2φ

ka

)
,

in which case (126) completes the proof of Theorem 5.1, with B(K, p)= π

2φ
. �

5.3. Proof of Theorem 5.2. — The elementary computation contained in Lemma 5.9
below will be useful in ensuing considerations.

Lemma 5.9. — Define fn : Fn
2 → L1(Fn

2) by

(127) fn(x)( y)= 2n1{x=y} − 1.

Then fn ∈ L≥1
p (Fn

2,L1(Fn
2)), yet for every t ∈ (0,∞) we have

(128) lim
n→∞

‖e−t�fn‖Lp(Fn
2,L1(Fn

2))

‖fn‖Lp(Fn
2,L1(Fn

2))

= 1,

where the limit in (128) is uniform in p ∈ [1,∞).

Proof. — By definition
∑

x∈Fn
2
fn(x)= 0, i.e., fn ∈ L≥1

p (Fn
2,L1(Fn

2)). Observe that

(129) ‖fn‖Lp(Fn
2,L1(Fn

2))
= 2

(
1− 1

2n

)
,

and note also that for every x, y ∈ Fn
2 we have

(130) fn(x)( y)=
n∏

i=1

(
1+ (−1)xi+yi

)− 1=
∑

A⊆{1,...,n}
A �=∅

WA(x)WA( y).

It follows from (95) that for every x ∈ Fn
2 we have

∥∥e−t�fn
∥∥

L1(Fn
2)
= 1

2n

∑

y∈Fn
2

∣∣∣∣
∑

w∈Fn
2

(
1− et

2

)‖x−w‖1
(

1+ et

2

)n−‖x−w‖1

fn(w)( y)

∣∣∣∣
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(127)= 1
2n

∑

y∈Fn
2

∣∣∣∣2
n

(
1− et

2

)‖x−y‖1
(

1+ et

2

)n−‖x−y‖1

− 1

∣∣∣∣.

Hence,

(131)
∥∥e−t�fn

∥∥
Lp(Fn

2,L1(Fn
2))
=

n∑

m=0

(
n

m

)∣∣∣∣

(
1− e−t

2

)m(1+ e−t

2

)n−m

− 1
2n

∣∣∣∣.

Let U1, . . . ,Un be i.i.d. random variables such that Pr[U1 = 0] = Pr[U1 = 1] = 1
2 .

By the Central Limit Theorem,

1= lim
n→∞Pr

[ n∑

j=1

Uj ∈
(

1
2

n− n2/3,
1
2

n+ n2/3

)]
(132)

= lim
n→∞

∑

m∈( 1
2 n−n2/3, 1

2 n+n2/3)∩N

(
n

m

)
1
2n

.

Similarly, if V1, . . . ,Vn are i.i.d. random variables such that Pr[V1 = 1] = (1 − e−t)/2
and Pr[V1 = 0] = (1+ e−t)/2, then by the Central Limit Theorem,

1= lim
n→∞Pr

[ n∑

j=1

Vj ∈
(

1− e−t

2
n− n2/3,

1− e−t

2
n+ n2/3

)]
(133)

= lim
n→∞

∑

m∈( 1−e−t

2 n−n2/3, 1−e−t

2 n+n2/3)∩N

(
n

m

)(
1− e−t

2

)m(1+ e−t

2

)n−m

.

Fix ε ∈ (0,1). It follows from (132), (133) that for n large enough we have

(134)
∑

m∈( 1
2 n−n2/3, 1

2 n+n2/3)∩N

(
n

m

)
1
2n
≥ 1− ε

2
,

and

(135)
∑

m∈( 1−e−t

2 n−n2/3, 1−e−t

2 n+n2/3)∩N

(
n

m

)(
1− e−t

2

)m(1+ e−t

2

)n−m

≥ 1− ε

2
.

Moreover, by choosing n to be large enough we can ensure that

(136)
(

1
2

n− n2/3,
1
2

n+ n2/3

)
∩
(

1− e−t

2
n− n2/3,

1− e−t

2
n+ n2/3

)
= ∅.
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Since

m ∈
(

1
2

n− n2/3,
1
2

n+ n2/3

)

=⇒
(

1− e−t

2

)m(1+ e−t

2

)n−m

<
1
2n

(
1− e−2t

)n/2
(

1+ e−t

1− e−t

)n2/3

,

if n is large enough then

(137) m ∈
(

1
2

n− n2/3,
1
2

n+ n2/3

)
=⇒

(
1− e−t

2

)m(1+ e−t

2

)n−m

<
ε

2n+1
.

Moreover, because t > 0 we have h((1 − e−t)/2) > 1
2 , where h(s)

def= ss(1 − s)1−s for s ∈
[0,1]. Noting that

m ∈
(

1− e−t

2
n− n2/3,

1− e−t

2
n+ n2/3

)

=⇒
(

1− e−t

2

)m(1+ e−t

2

)n−m

>

(
h

(
1− e−t

2

))n(1− e−t

1+ e−t

)n2/3

,

we see that if n is large enough then

(138) m ∈
(

1− e−t

2
n− n2/3,

1− e−t

2
n+ n2/3

)
=⇒ 1

2n
<

ε

2

(
1− e−t

2

)m(1+ e−t

2

)n−m

.

Consequently, if we choose n so as to ensure the validity of (134), (135), (136), (137), (138),
then recalling (129) we see that

∥∥e−t�fn
∥∥

Lp(Fn
2,L1(Fn

2))
≥ 2

(
1− ε

2

)2 (129)≥ (1− ε)‖fn‖Lp(Fn
2,L1(Fn

2))
. �

Proof of Theorem 5.2. — Suppose that there exists δ ∈ (0,1), k ∈N, p ∈ (1,∞) and
t ∈ (0,∞) such that

(139) ∀n ∈N,
∥∥e−t�

∥∥
L≥k

p (Fn
2,X)→L≥k

p (Fn
2,X)

< 1− δ.

For n ∈N, identify Fkn
2 with the k-fold product of Fn

2. Define F : Fkn
2 → L1(Fkn

2 ) by

(140) F
(
x1, . . . , xk

)(
y1, . . . , yk

) def=
k∏

i=1

fn
(
xi
)(

yi
)
,
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where fn ∈ L≥1
p (Fn

2,L1(Fn
2)) is given in (127). Then F ∈ L≥k

p (Fkn
2 ,L1(Fkn

2 )). For every injec-
tive linear operator T : L1(Fkn

2 )→X we have T ◦ F ∈ L≥k
p (Fkn

2 ,X), and therefore

1− δ
(139)
>
‖e−t�(T ◦ F)‖Lp(Fkn

2 ,X)

‖T ◦ F‖Lp(Fkn
2 ,X)

≥ 1
‖T‖ · ‖T−1‖ ·

‖e−t�F‖Lp(Fkn
2 ,L1(Fkn

2 ))

‖F‖Lp(Fkn
2 ,L1(Fkn

2 ))

(141)

(140)= 1
‖T‖ · ‖T−1‖ ·

(‖e−t�fn‖Lp(Fn
2,L1(Fn

2))

‖fn‖Lp(Fn
2,L1(Fn

2))

)k

−−→
n→∞

1
‖T‖ · ‖T−1‖ ,

where in the last step of (141) we used Lemma 5.9. It follows that

sup
m∈N

inf
S∈L (	m

1 ,X)
‖S‖ · ∥∥S−1

∥∥≥ 1
1− δ

.

By Pisier’s K-convexity theorem [61] we conclude that X must be K-convex. �

5.4. Inverting the Laplacian on the vector-valued tail space. — Here we discuss lower
bounds on the restriction of � to the tail space. Such bounds can potentially yield a
simplification of our construction of the base graph; see Remarks 5.12 and 7.5 below.

Theorem 5.10. — For every K, p ∈ (1,∞) there exist δ = δ(K, p), c = c(K, p) ∈ (0,1)

such that if X is a K-convex Banach space with K(X)≤K then for every n ∈N and k ∈ {1, . . . , n},
(142) f ∈ L≥k

p

(
Fn

2,X
) =⇒ ‖�f ‖Lp(Fn

2,X) ≥ ckδ · ‖ f ‖Lp(Fn
2,X).

Proof. — The estimate (142) is deduced from Theorem 5.1 as follows. If f ∈
L≥k

p (Fn
2,X) then

‖f ‖Lp(Fn
2,X)

=
∥∥∥∥
∫ ∞

0
e−t��fdt

∥∥∥∥
Lp(Fn

2,X)

(97)≤ C
(∫ 1

0
e−AktBdt +

∫ ∞

1
e−Aktdt

)
‖�f ‖Lp(Fn

2,X)

≤C
(

Γ (1/B)

(Ak)1/B
+ e−Ak

Ak

)
‖�f ‖Lp(Fn

2,X) � CB
A1/B

· 1
k1/B

‖�f ‖Lp(Fn
2,X). �

We also have the following converse to Theorem 5.10.

Theorem 5.11. — If X is a Banach space such that for some p,K ∈ (0,∞) and k ∈N we

have

(143) lim
n→∞ inf

f ∈L≥k
p (Fn

2,X)

f �=0

‖�f ‖Lp(Fn
2,X)

‖f ‖Lp(Fn
2,X)

> 0,

then X is K-convex.
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Proof. — For f ∈ Lp(Fn
2,X) define

�−1f =
∑

A⊆{1,...,n}
A �=∅

1
|A| f̂ (A)WA.

In [54, Theorem 5] it was shown that if X is not K-convex then

sup
n∈N

∥∥�−1
∥∥

Lp(Fn
2,X)→Lp(Fn

2,X)
=∞.

Here we need to extend this statement to the assertion contained in (144) below, which
should hold true for every Banach space X that is not K-convex and every k ∈N.

(144) sup
n∈N

∥∥�−1
∥∥

L≥k
p (Fn

2,X)→L≥k
p (Fn

2,X)
=∞.

Arguing as in the proof of Theorem 5.2, by Pisier’s K-convexity theorem [61] it
will suffice to prove that for n≥ 2, if F : Fkn

2 → L1(Fkn
2 ) is given as in (140) then

(145)
‖�−1F‖Lp(Fkn

2 ,L1(Fkn
2 ))

‖F‖Lp(Fkn
2 ,L1(Fkn

2 ))

� log n

8k
.

Note that by (129),

(146) ‖F‖Lp(Fkn
2 ,L1(Fkn

2 )) = 2k

(
1− 1

2n

)k

≤ 2k.

By (130) and (140), for every (x1, . . . , xk), ( y1, . . . , yk) ∈ Fkn
2 and every t ∈ (0,∞),

e−t�F
(
x1, . . . , xk

)(
y1, . . . , yk

)=
k∏

i=1

( n∏

j=1

(
1+ e−t(−1)

xi
j+yi

j
)− 1

)
(147)

=
k∏

i=1

((
1− e−t

)‖xi−yi‖1
(
1+ e−t

)n−‖xi−yi‖1 − 1
)
.

For every x ∈ Fn
2 denote

Ωx
def=
{

y ∈ Fn
2 : ‖y− x‖1 ≤ n

2

}
.

Then

(148) ∀x ∈ Fn
2, |Ωx| ≥ 2n−1,
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and by (147) we have

(149)
(

y1, . . . , yk
) ∈

k∏

i=1

Ωxi =⇒ ∣∣e−t�F
(
x1, . . . , xk

)(
y1, . . . , yk

)∣∣≥ (
1−(1− e−2t

)n/2)k
.

Now,
∥∥�−1F

(
x1, . . . , xk

)∥∥
L1(Fkn

2 )
(150)

=
∥∥∥∥
∫ ∞

0
e−t�F

(
x1, . . . , xk

)
dt

∥∥∥∥
L1(Fkn

2 )

≥ 1
2kn

∑

( y1,...,yk)∈∏k
i=1 Ω

xi

∣∣∣∣
∫ ∞

0
e−t�F

(
x1, . . . , xk

)(
y1, . . . , yk

)
dt

∣∣∣∣

≥ 1
2k

∫ ∞

0

(
1− (

1− e−2t
)n/2)k

dt,

where in (150) we used (148) and (149). Finally,

(151)
∥∥�−1F

∥∥
Lp(Fkn

2 ,L1(Fkn
2 ))

(150)≥ 1
2k

∫ 1
2 log n

0

(
1− (

1− e−2t
)n/2)k

dt � log n

4k
.

The desired estimate (145) now follows from (146) and (151). �

Remark 5.12. — The following natural problem presents itself. Can one improve
Theorem 5.10 so as to have δ = 1, i.e., to obtain the bound

(152) f ∈ L≥k
p

(
Fn

2,X
) =⇒ ‖�f ‖Lp(Fn

2,X) ≥ c(K, p)k · ‖ f ‖Lp(Fn
2,X)?

As discussed in Remark 5.5, this seems to be unknown even when X= R. If (152) were
true then it would significantly simplify our construction of the base graph, since in Sec-
tion 7 we would be able to use the “vanilla” hypercube quotients of [28] instead of the
quotients of the discretized heat semigroup as in Lemma 7.3; see Remark 7.5 below for
more information on this potential simplification.

6. Nonlinear spectral gaps in uniformly convex normed spaces

Let (X,‖ · ‖X) be a normed space. For n ∈N and p ∈ [1,∞) we let Ln
p(X) denote

the space of functions f : {1, . . . , n}→X, equipped with the norm

‖f ‖Ln
p(X) =

(
1
n

n∑

i=1

∥∥ f (i)
∥∥p

X

)1/p

.
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Thus, using the notation introduced in the beginning of Section 5, Ln
p(X)= Ln

p({1, . . . , n},
X). We shall also use the notation

Ln
p(X)0

def=
{

f ∈ Ln
p(X) :

n∑

i=1

f (i)= 0
}
.

Given an n × n symmetric stochastic matrix A = (aij) we denote by A ⊗ In
X the

operator from Ln
p(X) to Ln

p(X) given by

(A⊗ In
X) f (i)=

n∑

j=1

aij f ( j).

Note that since A is symmetric and stochastic the operator A⊗ In
X preserves the subspace

Ln
p(X)0, that is (A⊗ In

X)(Ln
p(X)0)⊆ Ln

p(X)0. Define

(153) λ
(p)

X (A)
def= ∥∥A⊗ In

X

∥∥
Ln

p(X)0→Ln
p(X)0

.

Note that, since A is doubly stochastic, λ
p

X(A)≤ 1. It is immediate to check that

λ
(2)

R (A)= λ
(2)

L2
(A)= λ(A)= max

i∈{2,...,n}
∣∣λi(A)

∣∣.

Thus λ
(p)

X (A) should be viewed as a non-Euclidean (though still linear) variant of the
absolute spectral gap of A. The following lemma substantiates this analogy by establishing
a relation between λ

(p)

X (A) and γ+(A,‖ · ‖p

X).

Lemma 6.1. — For every normed space (X,‖ · ‖X), every p≥ 1 and every n× n symmetric

stochastic matrix A, we have

γ+
(
A,‖ · ‖p

X

)≤
(

1+ 4

1− λ
(p)

X (A)

)p

.(154)

Proof. — Write λ = λ
(p)

X (A). We may assume that λ < 1, since otherwise there is
nothing to prove. Fix f , g : {1, . . . , n}→X and denote

f
def= 1

n

n∑

i=1

f (i) and g
def= 1

n

n∑

i=1

g(i).

Thus

f0
def= f − f ∈ Ln

p(X)0 and g0
def= g − g ∈ Ln

p(X)0.

Therefore

(155)
∥∥(A⊗ In

X

)
f0
∥∥

Ln
p(X)
≤ λ‖ f0‖Ln

p(X) and
∥∥(A⊗ In

X

)
g0

∥∥
Ln

p(X)
≤ λ‖g0‖Ln

p(X).
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Let B be the (2n)× (2n) symmetric stochastic matrix given by

(156) B=
(

0 A
A 0

)
.

Letting h= f0 ⊕ g0 ∈ L2n
p (X) be given by

h(i)
def=
{

f0(i) if i ∈ {1, . . . , n},
g0(i− n) if i ∈ {n+ 1, . . . ,2n},

we see that

(1− λ)‖h‖L2n
p (X)(157)

= ‖h‖L2n
p (X) −

(λp‖ f0‖p

Ln
p(X) + λp‖g0‖p

Ln
p(X)

2

)1/p

(155)≤ ‖h‖L2n
p (X) −

(
1
2

∥∥(A⊗ In
X

)
f0
∥∥p

Ln
p(X)
+ 1

2

∥∥(A⊗ In
X

)
g0

∥∥p

Ln
p(X)

)1/p

(156)= ‖h‖L2n
p (X) −

∥∥(B⊗ I2n
X

)
h
∥∥

L2n
p (X)

≤ ∥∥(IL2n
p (X) − B⊗ I2n

X

)
h
∥∥

L2n
p (X)

=
(

1
2n

n∑

i=1

∥∥∥∥
n∑

j=1

aij

(
f0(i)− g0( j)

)∥∥∥∥
p

X

+ 1
2n

n∑

i=1

∥∥∥∥
n∑

j=1

aij

(
g0(i)− f0( j)

)∥∥∥∥
p

X

)1/p

≤
(

1
n

n∑

i=1

n∑

j=1

aij

∥∥ f0(i)− g0( j)
∥∥p

X

)1/p

≤ ‖ f − g‖X +
(

1
n

n∑

i=1

n∑

j=1

aij

∥∥ f (i)− g( j)
∥∥p

X

)1/p

.

Note that

‖f − g‖X =
∥∥∥∥

1
n

n∑

i=1

n∑

j=1

aij

(
f (i)− g( j)

)∥∥∥∥
X

(158)

≤ 1
n

n∑

i=1

n∑

j=1

aij

∥∥ f (i)− g( j)
∥∥

X
≤
(

1
n

n∑

i=1

n∑

j=1

aij

∥∥f (i)− g( j)
∥∥p

X

)1/p

.
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Combining (157) and (158) we see that

(159)
(

1
2n

n∑

i=1

(∥∥ f0(i)
∥∥p

X
+∥∥g0(i)

∥∥p

X

))1/p

≤ 2
1− λ

(
1
n

n∑

i=1

n∑

j=1

aij

∥∥ f (i)− g( j)
∥∥p

X

)1/p

.

But,

(
1
n2

n∑

i=1

n∑

j=1

∥∥ f (i)− g( j)
∥∥p

X

)1/p

≤ ∥∥ f − g
∥∥

X
+
(

1
n2

n∑

i=1

n∑

j=1

∥∥ f0(i)− g0( j)
∥∥p

X

)1/p

≤ ∥∥ f − g
∥∥

X
+
(

1
n

n∑

i=1

2p−1
(∥∥ f0(i)

∥∥p

X
+ ∥∥g0(i)

∥∥p

X

))1/p

(158)∧(159)≤
(

1+ 4
1− λ

)(
1
n

n∑

i=1

n∑

j=1

aij

∥∥ f (i)− g( j)
∥∥p

X

)1/p

,

which implies the desired estimate (154). �

6.1. Norm bounds need not imply nonlinear spectral gaps. — One cannot bound γ+(A,

‖ · ‖p

X) in terms of λ
(p)

X (A) for a general Banach space X, as shown in the following
example.

Lemma 6.2. — For every n ∈ N there exists a 2n × 2n symmetric stochastic matrix An such

that for every p ∈ [1,∞),

(160) sup
n∈N

γ+
(
An,‖ · ‖p

L1

)
<∞,

yet

(161) lim
n→∞λ

(p)

L1
(An)= 1.

Proof. — We use here the results and notation of Section 5. For every t ∈ (0,∞),
the operator e−t� is an averaging operator, since by (93) it corresponds to convolution with
the Riesz kernel given in (94). Hence the Fn

2×Fn
2 matrix An whose entry at (x, y) ∈ Fn

2×Fn
2

is

(
e−t�δx

)
( y)

(95)=
(

1− e−t

2

)‖x−y‖1
(

1+ e−t

2

)n−‖x−y‖1
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is symmetric and stochastic. Lemma 5.9 implies the validity of (161), so it remains to
establish (160).

By Lemma 5.4 there exists cp ∈ (0,∞) such that

λ
(2p)

L2p
(An)≤ e−cp min{t,t2}.

It therefore follows from Lemma 6.1 that

γ+
(
An,‖ · ‖2p

L2p

)≤
(

5− e−cp min{t,t2}

1− e−cp min{t,t2}

)p
def= Cp(t) <∞.

Since L2 embeds isometrically into L2p (see e.g. [70]), it follows that γ+(An,‖·‖2p

L2
)≤Cp(t).

It is a standard fact that L1 equipped with the metric d( f , g) = √‖f − g‖1 admits an
isometric embedding into L2 (for one of several possible simple proofs of this, see [50,
Section 3]). It follows that γ+(An,‖ · ‖p

L1
)= γ+(An, d2p)≤Cp(t). �

6.2. A partial converse to Lemma 6.1 in uniformly convex spaces. — Despite the validity
of Lemma 6.2, Lemma 6.6 below is a partial converse to Lemma 6.1 that holds true
if X is uniformly convex. We start this section with a review of uniform convexity and
smoothness; the material below will also be used in Section 6.3.

Let (X,‖ · ‖X) be a normed space. The modulus of uniform convexity of X is defined
for ε ∈ [0,2] as

δX(ε)
def= inf

{
1− ‖x+ y‖X

2
: x, y ∈X, ‖x‖X = ‖y‖X = 1, ‖x− y‖X = ε

}
.(162)

X is said to be uniformly convex if δX(ε) > 0 for all ε ∈ (0,2]. Furthermore, X is said to
have modulus of convexity of power type p if there exists a constant c ∈ (0,∞) such that
δX(ε) ≥ cεp for all ε ∈ [0,2]. It is straightforward to check that in this case necessarily
p≥ 2. By Proposition 7 in [5] (see also [14]), X has modulus of convexity of power type p

if and only if there exists a constant K ∈ [1,∞) such that for every x, y ∈X

‖x‖p

X +
1

Kp
‖ y‖p

X ≤
‖x+ y‖p

X + ‖x− y‖p

X

2
.(163)

The infimum over those K for which (163) holds is called the p-convexity constant of X,
and is denoted Kp(X).

The modulus of uniform smoothness of X is defined for τ ∈ (0,∞) as

(164) ρX(τ )
def= sup

{‖x+ τ y‖X + ‖x− τ y‖X

2
− 1 : x, y ∈X, ‖x‖X = ‖y‖X = 1

}
.

X is said to be uniformly smooth if limτ→0 ρX(τ )/τ = 0. Furthermore, X is said to have
modulus of smoothness of power type p if there exists a constant C ∈ (0,∞) such that



NONLINEAR SPECTRAL CALCULUS AND SUPER-EXPANDERS 53

ρX(τ )≤Cτ p for all τ ∈ (0,∞). It is straightforward to check that in this case necessarily
p ∈ [1,2]. It follows from [5] that X has modulus of smoothness of power type p if and
only if there exists a constant S ∈ [1,∞) such that for every x, y ∈X

(165)
‖x+ y‖p

X + ‖x− y‖p

X

2
≤ ‖x‖p

X + Sp‖y‖p

X.

The infimum over those S for which (165) holds is called the p-smoothness constant of X,
and is denoted Sp(X).

The moduli appearing in (162) and (164) relate to each other via the following
classical duality formula of Lindenstrauss [33].

ρX∗(τ )= sup
{

τε

2
− δX(ε) : ε ∈ [0,2]

}
.

Correspondingly, it was shown in [5, Lemma 5] that the best constants in (163) and (165)
have the following duality relation.

(166) Kp(X)= Sp/(p−1)

(
X∗).

Observe that if q≥ p then for all x, y ∈X we have
(‖x+ y‖p

X + ‖x− y‖p

X

2

)1/p

≤
(‖x+ y‖q

X + ‖x− y‖q

X

2

)1/q

,

and
(
‖x‖q

X +
1

Kq
‖y‖q

X

)1/q

≤
(
‖x‖p

X +
1

Kp
‖y‖p

X

)1/p

.

Hence,

(167) q≥ p =⇒ Kq(X)≤Kp(X).

Similarly we have (though we will not use this fact later),

q≤ p =⇒ Sq(X)≤ Sp(X).

The following lemma can be deduced from a combination of results in [14, 15]
and [5] (without the explicit dependence on p, q). A simple proof of the case p = 2 of it
is also contained in [52]; we include the natural adaptation of the argument to general
p ∈ (1,2] for the sake of completeness.

Lemma 6.3. — For every p ∈ (1,2], q ∈ [p,∞), every Banach space (X,‖ · ‖X) and every

measure space (Ω,μ), we have

Sp

(
Lq(μ,X)

)≤ (5pq)1/pSp(X).
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Proof. — Fix S > Sp(X). We will show that for every x, y ∈X we have

(168)
‖x+ y‖q

X + ‖x− y‖q

X

2
≤ (‖x‖p

X + 5pqSp‖ y‖p

X

)q/p
.

Assuming the validity of (168) for the moment, we complete the proof of
Lemma 6.3 as follows. If f , g ∈ Lq(μ,X) then

‖ f + g‖p

Lq(μ,X) + ‖ f − g‖p

Lq(μ,X)

2
≤

(‖ f + g‖q

Lq(μ,X) + ‖ f − g‖q

Lq(μ,X)

2

)p/q

=
(∫

Ω

‖ f + g‖q

X + ‖ f − g‖q

X

2
dμ

)p/q

(168)≤ ∥∥‖ f ‖p

X + 5pqSp‖g‖p

X

∥∥
Lq/p(μ)

≤ ‖ f ‖p

Lq(μ,X) + 5pqSp‖g‖p

Lq(μ,X).

This proves that Sp(Lq(μ,X))p ≤ 5pqSp(X)p, as desired.
It remains to prove (168). Since ‖ y‖p

X + 5pqSp‖x‖p

X ≤ ‖x‖p

X + 5pqSp‖ y‖p

X if ‖x‖X ≤
‖ y‖X, it suffices to prove (168) under the additional assumption ‖ y‖X ≤ ‖x‖X. After nor-
malization we may further assume that ‖x‖X = 1 and ‖ y‖X ≤ 1.

Note that

(169)
∣∣‖x+ y‖p

X − ‖x− y‖p

X

∣∣≤ (
1+ ‖ y‖X

)p − (
1− ‖ y‖X

)p ≤ 2p‖ y‖X.

We claim that for every α ∈ [1,∞) and β ∈ [−1,1] we have

(170)
(

(1+ β)α + (1− β)α

2

)1/α

≤ 1+ 2αβ2.

Indeed, by symmetry it suffices to prove (170) when β ∈ [0,1]. The left hand side of (170)
is at most max{1+ β,1− β} = 1+ β , which implies (170) when β ≥ 1/(2α). We may
therefore assume that β ∈ [0,1/(2α)], in which case the crude bound (1+ β)α + (1−
β)α ≤ 2+ 4α2β2 follows from Taylor’s expansion, implying (170) in this case as well.

Set

(171) b
def= ‖x+ y‖p

X + ‖x− y‖p

X

2
and β

def= ‖x+ y‖p

X − ‖x− y‖p

X

‖x+ y‖p

X + ‖x− y‖p

X

,

and define

(172) θ
def=
(

(1+ β)q/p + (1− β)q/p

2

)p/q

− 1 ∈ [0,1].



NONLINEAR SPECTRAL CALCULUS AND SUPER-EXPANDERS 55

Observe that by convexity b≥ 1, and therefore

(173) θ
(170)≤ 2

q

p
β2

(169)∧(171)≤ 2q

p

(
2p‖ y‖X

2b

)2

≤ 2pq‖ y‖p

X,

where we used the fact that p ∈ [1,2] and ‖y‖X ≤ 1. Now,

‖x+ y‖q

X + ‖x− y‖q

X

2
(171)∧(172)= (

b(1+ θ)
)q/p

(165)≤ ((
1+ Sp‖ y‖p

X

)
(1+ θ)

)q/p

(173)≤ (
1+ 5pqSp‖ y‖p

X

)q/p
. �

By (166), Lemma 6.3 implies the following dual statement.

Corollary 6.4. — For every p ∈ [2,∞), q ∈ (1, p], every Banach space (X,‖ ·‖X) and every

measure space (Ω,μ), we have

Kp

(
Lq(μ,X)

)≤
(

5pq

(p− 1)(q− 1)

)1−1/p

Kp(X).

The following lemma is stated and proved in [4] when p= 2.

Lemma 6.5. — Let X be a normed space and U a random vector in X with E[‖U‖p

X]<∞.

Then

∥∥E[U]∥∥p

X
+ 1

(2p−1 − 1)Kp(X)p
E
[∥∥U−E[U]∥∥p

X

]≤ E
[‖U‖p

X

]
.

Proof. — We repeat here the p > 2 variant of the argument from [4] for the sake of
completeness. Let (Ω,Pr) be the probability space on which U is defined. Denote

(174) θ
def= inf

{
E[‖V‖p

X] − ‖E[V]‖p

X

E[‖V−E[V]‖p

X]
: V ∈ Lp(Ω,X)∧E

[∥∥V−E[V]∥∥p

X

]
> 0

}
.

Then θ ≥ 0. Our goal is to show that

(175) θ ≥ 1
(2p−1 − 1)Kp(X)p

.

Fix φ > θ . Then there exists a random vector V0 ∈ Lp(Ω,X) for which

(176) φE
[∥∥V0 −E[V0]

∥∥p

X

]
> E

[‖V0‖p

X

]− ∥∥E[V0]
∥∥p

X
.
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Fix K > Kp(X). Apply the inequality (163) to the vectors

x= 1
2

V0 + 1
2

E[V0] and y= 1
2

V0 − 1
2

E[V0],
to get the point-wise estimate

(177) 2

∥∥∥∥
1
2

V0 + 1
2

E[V0]
∥∥∥∥

p

X

+ 2
Kp

∥∥∥∥
1
2

V0 − 1
2

E[V0]
∥∥∥∥

p

X

≤ ‖V0‖p

X +
∥∥E[V0]

∥∥p

X
.

Hence

φE
[∥∥V0 −E[V0]

∥∥p

X

]

(176)
> E

[‖V0‖p

X

]− ‖E[V0]‖p

X

(177)≥ 2
(

E
[∥∥∥∥

1
2

V0 + 1
2

E[V0]
∥∥∥∥

p

X

]
−
∥∥∥∥E
[

1
2

V0 + 1
2

E[V0]
]∥∥∥∥

p

X

)

+ 2
Kp

E
[∥∥∥∥

1
2

V0 − 1
2

E[V0]
∥∥∥∥

p

X

]

(174)≥ 2θE
[∥∥∥∥

(
1
2

V0 + 1
2

E[V0]
)
−E

[
1
2

V0 + 1
2

E[V0]
]∥∥∥∥

p

X

]

+ 2
Kp

E
[∥∥∥∥

1
2

V0 − 1
2

E[V0]
∥∥∥∥

p

X

]

=
(

θ

2p−1
+ 1

2p−1Kp

)
E
[∥∥V0 −E[V0]

∥∥p

X

]
.

Thus

(178) φ ≥ θ

2p−1
+ 1

2p−1Kp
.

Since (178) holds for all φ > θ and K > Kp(X), the desired lower bound (175) follows. �

Lemma 6.6. — Fix p ∈ [2,∞) and let X be a normed space with Kp(X) <∞. Then for

every n× n symmetric stochastic matrix A= (aij) we have

λ
(p)

X (A)≤
(

1− 1

(2p−1 − 1)Kp(X)pγ+(A,‖ · ‖p

X)

)1/p

.

Proof. — Fix γ+ > γ+(A,‖ · ‖p

X) and f ∈ Ln
p(X)0. For every i ∈ {1, . . . , n} consider

the random vector Ui ∈X given by

Pr
[
Ui = f ( j)

]= aij.
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Lemma 6.5 implies that
∥∥∥∥

n∑

j=1

aij f ( j)

∥∥∥∥
p

X

(179)

≤
n∑

j=1

aij

∥∥ f ( j)
∥∥p

X
− 1

(2p−1 − 1)Kp(X)p

n∑

j=1

aij

∥∥∥∥ f ( j)−
n∑

k=1

aik f (k)

∥∥∥∥
p

X

.

Define for i ∈ {1, . . . , n},

g(i)= E[Ui] =
n∑

k=1

aik f (k).

By averaging (179) over i ∈ {1, . . . , n} we see that

∥∥(A⊗ In
X

)
f
∥∥p

Ln
p(X)
= 1

n

n∑

i=1

∥∥∥∥
n∑

j=1

aij f ( j)

∥∥∥∥
p

X

(180)

≤ 1
n

n∑

i=1

n∑

j=1

aij

∥∥ f ( j)
∥∥p

X

− 1
n(2p−1 − 1)Kp(X)p

n∑

i=1

n∑

j=1

aij

∥∥ f ( j)− g(i)
∥∥p

X

= ‖ f ‖p

Ln
p(X) −

1
n(2p−1 − 1)Kp(X)p

n∑

i=1

n∑

j=1

aij

∥∥ f ( j)− g(i)
∥∥p

X
.

The definition of γ+(A,‖ · ‖p

X) implies that

1
n

n∑

i=1

n∑

j=1

aij

∥∥ f ( j)− g(i)
∥∥p

X
≥ 1

γ+n2

n∑

i=1

n∑

j=1

∥∥ f ( j)− g(i)
∥∥p

X
(181)

≥ 1
γ+n

n∑

j=1

∥∥∥∥f ( j)− 1
n

n∑

i=1

g(i)

∥∥∥∥
p

X

= 1
γ+n

n∑

j=1

∥∥ f ( j)
∥∥p

X
= 1

γ+
‖ f ‖p

Ln
p(X),

where we used the fact that since f ∈ Ln
p(X)0 we have

n∑

i=1

g(i)=
n∑

k=1

( n∑

i=1

aik

)
f (k)=

n∑

k=1

f (k)= 0.
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Substituting (181) into (180) yields the bound

(182)
∥∥(A⊗ In

X

)
f
∥∥p

Ln
p(X)
≤
(

1− 1
(2p−1 − 1)Kp(X)pγ+

)
‖ f ‖p

Ln
p(X).

Since (182) holds for every f ∈ Ln
p(X)0 and γ+ > γ+(A,‖ · ‖p

X), inequality (182) implies

the required bound on λ
(p)

X (A)= ‖A⊗ In
X‖Ln

p(X)0→Ln
p(X)0 . �

Theorem 6.7. — Fix p ∈ [2,∞) and t ∈N. Let X be a normed space with Kp(X) <∞.

Then for every n× n symmetric stochastic matrix A= (aij) we have

γ+
(
At,‖ · ‖p

X

)≤ [4Kp(X)]p2 ·max
{

1,

(
γ+(A,‖ · ‖p

X)

t

)p}
.

Proof. — Note that since A⊗ In
X preserves Ln

p(X)0 we have

λ
(p)

X

(
At
)= ∥∥At ⊗ In

X

∥∥
Ln

p(X)0→Ln
p(X)0

= ∥∥(A⊗ In
X

)t∥∥
Ln

p(X)0→Ln
p(X)0

(183)

≤ ∥∥A⊗ In
X

∥∥t

Ln
p(X)0→Ln

p(X)0
= λ

(p)

X (A)t.

Lemma 6.1 applied to the matrix At , in combination with (183), yields the bound

(184) γ+
(
At,‖ · ‖p

X

)≤
(

5− λ
(p)

X (A)t

1− λ
(p)

X (A)t

)p

≤
(

5

1− λ
(p)

X (A)t

)p

.

On the other hand, using Lemma 6.6 we have

λ
(p)

X (A)≤
(

1− 1

(2p−1 − 1)Kp(X)pγ+(A,‖ · ‖p

X)

)1/p

(185)

≤ exp
(
− 1

p(2p−1 − 1)Kp(X)pγ+(A,‖ · ‖p

X)

)
.

Thus

1− λ
(p)

X (A)t
(185)≥ 1− exp

(
− t

p(2p−1 − 1)Kp(X)pγ+(A,‖ · ‖p

X)

)
(186)

≥ 1
2

min
{

1,
t

p(2p−1 − 1)Kp(X)pγ+(A,‖ · ‖p

X)

}
.

The required result is now a combination of (186) and (184). �
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6.3. Martingale inequalities and metric Markov cotype. — Let X be a Banach space with
Kp(X) <∞. Assume that {Mk}nk=0 ⊆X is a martingale with respect to the filtration F0 ⊆
F1 ⊆ · · · ⊆ Fn−1, i.e., E[Mi+1|Fi] =Mi for every i ∈ {0,1, . . . , n−1}. Lemma 6.5 implies
that

E
[‖Mn −M0‖p

X

∣∣ Fn−1

]
(187)

≥ ∥∥E
[
Mn −M0|Fn−1

]∥∥p

X

+ 1
(2p−1 − 1)Kp(X)p

E
[∥∥Mn −M0 −E[Mn −M0‖Fn−1]

∥∥p

X
|Fn−1

]

= ‖Mn−1 −M0‖p

X +
1

(2p−1 − 1)Kp(X)p
E
[‖Mn −Mn−1‖p

X

∣∣ Fn−1

]
.

Taking expectation in (187) yields the estimate

E
[‖Mn −M0‖p

X

]≥ E
[‖Mn−1 −M0‖p

X

]

+ 1
(2p−1 − 1)Kp(X)p

E
[‖Mn −Mn−1‖p

X

]
.

Iterating this argument we obtain the following famous inequality of Pisier [59], which
will be used crucially in what follows.

Theorem 6.8 (Pisier’s martingale inequality). — Let X be a Banach space with Kp(X) <∞.

Suppose that {Mk}nk=0 ⊆X is a martingale (with respect some filtration). Then

E
[‖Mn −M0‖p

X

]≥ 1
(2p−1 − 1)Kp(X)p

n∑

k=1

E
[‖Mk −Mk−1‖p

X

]
.

We also need the following variant of Pisier’s inequality.

Corollary 6.9. — Fix p ∈ [2,∞), q ∈ (1,∞) and let X be a normed space with Kp(X) <

∞. Then for every q-integrable martingale {Mk}nk=0 ⊆X, if q ∈ [p,∞) then

(188) E
[‖Mn −M0‖q

X

]≥ 1
(2q−1 − 1)Kp(X)q

n∑

k=1

E
[‖Mk −Mk−1‖q

X

]
.

and if q ∈ (1, p], then

(189) E
[‖Mn −M0‖q

X

]≥ ((1− 1/p)(1− 1/q))q(1−1/p)

5q(1−1/p)(2Kp(X))qn1−q/p

n∑

k=1

E
[‖Mk −Mk−1‖q

X

]
.
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Proof. — Denote the probability space on which the martingale {Mk}nk=0 is defined
by (Ω,μ). Suppose also that F0 ⊆ F1 ⊆ · · · ⊆ Fn−1 is the filtration with respect to which
{Mk}nk=0 is a martingale.

If p ≤ q then (188) is an immediate consequence of Theorem 6.8 and (167). If
q ∈ (1, p] then by Corollary 6.4 we have

K def=Kp

(
Lq(μ,X)

)≤
(

5pq

(p− 1)(q− 1)

)1−1/p

Kp(X).

We can therefore apply (163) to the following two vectors in Lq(μ,X).

x=Mn−1 −M0 + Mn −Mn−1

2
and y= Mn −Mn−1

2
,

yielding the following estimate.
(

E
[∥∥∥∥Mn−1 −M0 + Mn −Mn−1

2

∥∥∥∥
q

X

])p/q

+ 1
(2K)p

(
E
[‖Mn −Mn−1‖q

X

])p/q
(190)

≤ (E[‖Mn −M0‖q

X])p/q + (E[‖Mn−1 −M0‖q

X])p/q

2
.

Now,

E
[‖Mn−1 −M0‖q

X

]= E
[∥∥Mn−1 −M0 +E[Mn −Mn−1|Fn−1]

∥∥q

X

]

≤ E
[‖Mn −M0‖q

X

]
,

and

E
[‖Mn−1 −M0‖q

X

]= E
[∥∥∥∥Mn−1 −M0 +E

[
Mn −Mn−1

2
|Fn−1

]∥∥∥∥
q

X

]

≤ E
[∥∥∥∥Mn−1 −M0 + Mn −Mn−1

2

∥∥∥∥
q

X

]
.

Thus (190) implies that

(191)
(
E
[‖Mn−1−M0‖q

X

])p/q+ 1
(2K)p

(
E
[‖Mn−Mn−1‖q

X

])p/q ≤ (
E
[‖Mn−M0‖q

X

])p/q
.

Applying (191) inductively we get the lower bound

(2K)p
(
E
[‖Mn −M0‖q

X

])p/q ≥
n∑

k=1

(
E
[‖Mk −Mk−1‖q

X

])p/q

≥ 1

n
p
q
−1

( n∑

k=1

E
[‖Mk −Mk−1‖q

X

])p/q

,

which is precisely (189). �
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We are now in position to prove the main theorem of this section, which establishes
metric Markov cotype p inequalities (recall Definition 1.4) for Banach space with modulus
of convexity of power type p. An important theorem of Pisier [59] asserts that if a normed
space (X,‖ · ‖X) is super-reflexive then there exists p ∈ [2,∞) and an equivalent norm
‖ · ‖ on X such that Kp(X,‖ · ‖) <∞. Thus the case q = 2 of Theorem 6.10 below
corresponds to Theorem 1.8.

Theorem 6.10. — Fix p ∈ [2,∞) and let (X,‖ · ‖X) be a normed space with Kp(X) <∞.

Then for every m, n ∈N, every n× n symmetric stochastic matrix A= (aij) and every x1, . . . , xn ∈X
there exist y1, . . . yn ∈X such that for all q ∈ (1,∞),

max
{ n∑

i=1

‖xi − yi‖q

X,

(
((1− 1/p)(1− 1/q))1−1/p

16 · 51−1/pKp(X)

)q

mmin{1,q/p}(192)

×
n∑

i=1

n∑

j=1

aij‖ yi − yj‖q

X

}

≤
n∑

i=1

n∑

j=1

Am(A)ij‖xi − xj‖q

X.

In particular, for q= 2 we have

n∑

i=1

‖xi − yi‖2
X + m2/p

n∑

i=1

n∑

j=1

aij‖ yi − yj‖2
X

≤ (
320Kp(X)

)2
n∑

i=1

n∑

j=1

Am(A)ij‖xi − xj‖2
X.

Thus X has metric Markov cotype p with exponent 2 and with C(2)
p (X)≤ 320Kp(X).

Proof. — Define f ∈ Ln
p(X) by f (i)= xi . For every 	 ∈ {1, . . . , n} let

Z(	)

0 ,Z(	)

1 ,Z(	)

2 , . . .

be the Markov chain on {1, . . . , n} which starts at 	 and has transition matrix A. In other
words Z(	)

0 = 	 with probability one and for all t ∈ {1, . . . ,m} and i, j ∈ {1, . . . , n} we have

Pr
[
Z(	)

t = j
∣∣ Z(	)

t−1 = i
]= aij.

For t ∈ {0, . . . ,m} define ft ∈ Ln
p(X) by

ft
def= (

Am−t ⊗ In
X

)
f .
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Observe that if we set

M(	)
t

def= ft
(
Z(	)

t

)

then M(	)

0 ,M(	)

1 , . . . ,M(	)
m is a martingale with respect to the filtration induced by the

random variables Z(	)

0 ,Z(	)

1 , . . . ,Z(	)
m . Indeed, writing L= A⊗ In

X we have for every t ≥ 1,

E
[
M(	)

t |Z(	)

0 , . . . ,Z(	)

t−1

]= E
[(

Lm−t f
)(

Z(	)
t

) ∣∣ Z(	)

t−1

]= Lm−tE
[

f
(
Z(	)

t

) ∣∣ Z(	)

t−1

]

= Lm−t(Lf )
(
Z(	)

t−1

)= (
Lm−(t−1)f

)(
Z(	)

t−1

)=M(	)

t−1.

Write

(193) K def=
{

(2q−1 − 1)Kp(X)q if q ∈ [p,∞),
5q(1−1/p)(2Kp(X))qm1−q/p

((1−1/p)(1−1/q))q(1−1/p) if q ∈ (1, p).

Then Corollary 6.9 applied to the martingale {M(	)
t }mt=0 implies that

(194) KE
[∥∥f

(
Z(	)

m

)− (Lmf
)
(	)
∥∥q

X

]≥
m∑

t=1

E
[∥∥(Lm−t f

)(
Z(	)

t

)− (Lm−t+1f
)(

Z(	)

t−1

)∥∥q

X

]
.

Let {Zt}∞t=0 be the Markov chain with transition matrix A such that Z0 is uniformly dis-
tributed on {1, . . . , n}. Averaging (194) over 	 ∈ {1, . . . , n} yields the inequality

(195) KE
[∥∥ f (Zm)− (Lmf

)
(Z0)

∥∥q

X

]≥
m∑

t=1

E
[∥∥(Lm−t f

)
(Zt)−

(
Lm−t+1f

)
(Zt−1)

∥∥q

X

]
,

which is the same as

K
n∑

i=1

n∑

j=1

(
Am
)

ij

∥∥ f (i)− (
Lmf

)
( j)
∥∥q

X
(196)

≥
m∑

t=1

n∑

i=1

n∑

j=1

aij

∥∥(Lm−t f
)
(i)− (

Lm−t+1f
)
( j)
∥∥q

X
.

In order to bound the right-hand side of (196), for every i ∈ {1, . . . , n} consider the vector

(197) yi
def= 1

m

n∑

j=1

m−1∑

s=0

(
As
)

ij
xj = 1

m

m−1∑

s=0

Lsf (i),

and observe that

(198)
1
m

m∑

s=1

Lsf (i)= yi − 1
m

xi + 1
m

Lmf (i)= yi − 1
m

n∑

r=1

(
Am
)

ir
(xi − xr).
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Therefore, using convexity we have:
m∑

t=1

n∑

i=1

n∑

j=1

aij

∥∥(Lm−t f
)
(i)− (

Lm−t+1f
)
( j)
∥∥q

X
(199)

≥ m

n∑

i=1

n∑

j=1

aij

∥∥∥∥
1
m

m∑

t=1

((
Lm−t f

)
(i)− (

Lm−t+1f
)
( j)
)∥∥∥∥

q

X

(197)∧(198)= m

n∑

i=1

n∑

j=1

aij

∥∥∥∥ yi − yj + 1
m

n∑

r=1

(
Am
)

jr
(xj − xr)

∥∥∥∥
q

X

≥ m

2q−1

n∑

i=1

n∑

j=1

aij‖ yi − yj‖q

X −
1

mq−1

n∑

i=1

n∑

j=1

aij

∥∥∥∥
n∑

r=1

(
Am
)

jr
(xj − xr)

∥∥∥∥
q

X

= m

2q−1

n∑

i=1

n∑

j=1

aij‖ yi − yj‖q

X −
1

mq−1

n∑

j=1

∥∥∥∥
n∑

r=1

(
Am
)

jr
(xj − xr)

∥∥∥∥
q

X

≥ m

2q−1

n∑

i=1

n∑

j=1

aij‖ yi − yj‖q

X −
1

mq−1

n∑

j=1

n∑

r=1

(
Am
)

jr
‖xj − xr‖q

X.

At the same time, we can bound the left-hand side of (196) as follows:
n∑

i=1

n∑

j=1

(
Am
)

ij

∥∥ f (i)− (
Lmf

)
( j)
∥∥q

X
=

n∑

i=1

n∑

j=1

(
Am
)

ij

∥∥∥∥xi −
n∑

r=1

(
Am
)

jr
xr

∥∥∥∥
q

X

(200)

≤
n∑

i=1

n∑

j=1

n∑

r=1

(
Am
)

ij

(
Am
)

jr
‖xi − xr‖q

X

≤ 2q−1
n∑

i=1

n∑

j=1

n∑

r=1

(
Am
)

ij

(
Am
)

jr

(‖xi − xj‖q

X + ‖xj − xr‖q

X

)

= 2q

n∑

i=1

n∑

j=1

(
Am
)

ij
‖xi − xj‖q

X.

We note that,
n∑

i=1

n∑

j=1

(
Am
)

ij
‖xi − xj‖q

X

=
n∑

i=1

n∑

j=1

(
1
m

m−1∑

t=0

AtAm−t

)

ij

‖xi − xj‖q

X
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≤ 2q−1

m

n∑

i=1

n∑

j=1

n∑

r=1

m−1∑

t=0

(
At
)

ir

(
Am−t

)
rj

(‖xi − xr‖q

X + ‖xr − xj‖q

X

)

= 2q−1
n∑

i=1

n∑

r=1

(
1
m

m−1∑

t=0

At

)

ir

‖xi − xr‖q

X

+ 2q−1
n∑

j=1

n∑

r=1

(
1
m

m−1∑

t=0

Am−t

)

rj

‖xr − xj‖q

X

= 2q

n∑

i=1

n∑

j=1

Am(A)ij‖xi − xj‖q

X +
2q−1

m

n∑

i=1

n∑

j=1

(
Am
)

ij
‖xi − xj‖q

X,

which, assuming that m≥ 2q gives the following bound.

(201)
n∑

i=1

n∑

j=1

(
Am
)

ij
‖xi − xj‖q

X ≤ 2q+1
n∑

i=1

n∑

j=1

Am(A)ij‖xi − xj‖q

X.

On the other hand, if m≤ 2q then

n∑

i=1

n∑

j=1

(
Am
)

ij
‖xi − xj‖q

X(202)

≤
n∑

i=1

n∑

j=1

n∑

r=1

air

(
Am−1

)
rj
‖xi − xj‖q

X

≤ 2q−1
n∑

i=1

n∑

j=1

n∑

r=1

air

(
Am−1

)
rj

(‖xi − xr‖q

X + ‖xr − xj‖q

X

)

= 2q−1
n∑

i=1

n∑

j=1

aij‖xi − xj‖q

X + 2q−1
n∑

i=1

n∑

j=1

(
Am−1

)
ij
‖xi − xj‖q

X

≤ 2q−1m

n∑

i=1

n∑

j=1

Am(A)ij‖xi − xj‖q

X ≤ 22q−1
n∑

i=1

n∑

j=1

Am(A)ij‖xi − xj‖q

X.

Thus, by combining (201) and (202) we get the estimate

(203)
n∑

i=1

n∑

j=1

(
Am
)

ij
‖xi − xj‖q

X ≤ 4q

n∑

i=1

n∑

j=1

Am(A)ij‖xi − xj‖q

X.
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Substituting (199) and (200) into (196) yields the bound

m

n∑

i=1

n∑

j=1

aij‖yi − yj‖q

X ≤ 4qK
n∑

i=1

n∑

j=1

(
Am
)

ij
‖xi − xj‖q

X(204)

(203)≤ 24qK
n∑

i=1

n∑

j=1

Am(A)ij‖xi − xj‖q

X.

At the same time,

(205)
n∑

i=1

‖xi− yi‖q

X =
n∑

i=1

∥∥∥∥
1
m

n∑

j=1

m−1∑

t=0

(
At
)

ij
(xi− xj)

∥∥∥∥
q

X

≤
n∑

i=1

n∑

j=1

Am(A)ij‖xi− xj‖q

X.

Recalling (193), the desired inequality (192) is now a combination of (204) and (205). �

7. Construction of the base graph

For t ∈ (0,∞) and n ∈N write

(206) τt
def= 1− e−t

2
and σ n

t

def= τ 4τt n
t (1− τt)

(1−4τt)n.

We also define en
t : {0, . . . , n}→N∪ {0} by

(207) en
t (k)

def=
⌊

τ k
t (1− τt)

n−k

σ n
t

⌋
.

The following lemma records elementary estimates on binomial sums that will be
useful for us later.

Lemma 7.1. — Fix t ∈ (0,1/4) and n ∈N∩ [8000,∞) such that

(208) τt ≥ 1
3
√

n
.

Then

(209)
1

3σ n
t

≤
∑

k∈Z∩[0,4τt n]

(
n

k

)
en
t (k)≤

1
σ n

t

.

Moreover, for every s ∈ Z∩ (4τtn, n] we have

(210)
∑

m∈Z∩[(s−4τt n)/2,s/2]

(
n

s− 2m

)
en
t (s− 2m)≥ 1

18σ n
t

.
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Proof. — For simplicity of notation write τ = τt and σ = σ n
t . The rightmost in-

equality in (209) is an immediate consequence of (207). To establish the leftmost estimate
in (209) note that by the Chernoff inequality (e.g. [2, Theorem A.1.4]) we have

(211)
∑

k∈Z∩(4τn,n]

(
n

k

)
τ k(1− τ)n−k < e−18τ 2n

(208)≤ 1
3
.

For every k ∈ {1, . . . , n} satisfying k ≤ 4τn we have τ k(1−τ)n−k ≥ σ , and therefore en
t (k)≥

1
2σ

τ k(1− τ)n−k. Hence

(212)
∑

k∈Z∩[0,4τn]

(
n

k

)
en
t (k)≥

1
2σ

∑

k∈Z∩[0,4τn]

(
n

k

)
τ k(1− τ)n−k

(211)
>

1
2σ

(
1− 1

3

)
= 1

3σ
.

This completes the proof of (209).
To prove (210), we apply a standard binomial concentration bound (e.g. [2, Corol-

lary A.1.14]) to get the estimate

(213)
∑

k∈Z∩[τn/2,3τn/2]

(
n

k

)
τ k(1− τ)n−k ≥ 1− 2e−τn/10 ≥ 8

9
,

where in the rightmost inequality in (213) we used the assumptions (208) and n ≥ 8000.
Observe that for every k ∈ Z ∩ [τn/2,3τn/2], since by the assumption t ∈ (0,1/4) we
have τ ∈ (0,1/8),

(214)

(
n

k+1

)
τ k+1(1− τ)n−k−1

(
n

k

)
τ k(1− τ)n−k

= τ

1− τ
· n− k

k + 1
∈
[

1− 3τ/2
3(1− τ)

,
2− τ

1− τ

]
⊆
[

1
4
,4
]
.

It follows that

∑

k∈(2Z)∩[τn/2,3τn/2]

(
n

k

)
τ k(1− τ)n−k

(214)≥ 1
8

∑

k∈Z∩[τn/2,3τn/2]

(
n

k

)
τ k(1− τ)n−k

(213)≥ 1
9
,

and, for the same reason,

∑

k∈(2Z+1)∩[τn/2,3τn/2]

(
n

k

)
τ k(1− τ)n−k ≥ 1

9
.

Thus,

(215)
∑

m∈Z∩[(s−3τn/2)/2,(s−τn/2)/2]

(
n

s− 2m

)
τ s−2m(1− τ)n−(s−2m) ≥ 1

9
.
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Finally,

∑

m∈Z∩[(s−4τn)/2,s/2]

(
n

s− 2m

)
en
t (s− 2m)

(207)≥ 1
2σ

∑

m∈Z∩[(s−3τn/2)/2,(s−τn/2)/2]

(
n

s− 2m

)
τ s−2m(1− τ)n−(s−2m)

(215)≥ 1
18σ

.

�

Lemma 7.2 (Discretization of e−t� w.r.t. Poincaré inequalities). — Fix t ∈ (0,1/4), p ∈
[1,∞) and n ∈N∩ [213,∞) such that

(216) τt ≥
√

p log(18n)

18n
.

Let Gn
t = (Fn

2,En
t ) be the graph whose vertex set is Fn

2 and every x, y ∈ Fn
2 is joined by en

t (‖x− y‖1)

edges. Then the graph Gn
t is dn

t ∈N regular, where

(217)
1

3σ n
t

≤ dn
t ≤

1
σ n

t

.

Moreover, for every metric space (X, dX) and every f , g : Fn
2 →X we have

1
3|En

t |
∑

(x,y)∈En
t

dX

(
f (x), g( y)

)p ≤ 1
2n

∑

(x,y)∈Fn
2×Fn

2

(
e−t�δx

)
( y)dX

(
f (x), g( y)

)p
(218)

≤ 3
|En

t |
∑

(x,y)∈En
t

dX

(
f (x), g( y)

)p
.

Proof. — Observe that the assumptions of Lemma 7.2 imply the assumptions of
Lemma 7.1. We may therefore use the conclusions of Lemma 7.1 in the ensuing proof.
For simplicity of notation write τ = τt and σ = σ n

t . By definition Gn
t is a regular graph.

Denote its degree by d = dn
t . Then,

(219) d =
n∑

k=0

(
n

k

)
et(k)

(207)∈
[

1
3σ

,
1
σ

]
.

This proves (217). We also immediately deduce the leftmost inequality in (218) as follows.

1
2n

∑

(x,y)∈Fn
2×Fn

2

(
e−t�δx

)
( y)dX

(
f (x), g( y)

)p

(96)= 1
2n

∑

(x,y)∈Fn
2×Fn

2

τ ‖x−y‖1(1− τ)n−‖x−y‖1dX

(
f (x), g( y)

)p
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(207)≥ σ

2n

∑

(x,y)∈Fn
2×Fn

2

en
t

(‖x− y‖1

)
dX

(
f (x), g( y)

)p

(217)≥ 1
3|En

t |
∑

(x,y)∈En
t

dX

(
f (x), g( y)

)p
,

where we used the fact that |Et
n| = 2nd .

It remains to prove the rightmost inequality in (218). To this end fix k ∈ Z satisfying
0≤ k ≤ 4τn and m ∈N∪ {0} satisfying k + 2m≤ n. For every permutation π ∈ Sn define
zπ

0 , . . . , zπ
2m+1, yπ

0 , . . . , yπ
2m+1 ∈ Fn

2 by setting zπ
0 = yπ

0 = 0 and for i ∈ {1, . . . ,2m+ 1},

zπ
i

def=
k−1∑

j=1

eπ( j) + eπ(k+i−1),

and

(220) yπ
i

def=
i∑

j=1

zπ
j ,

where the sum in (220) is performed in Fn
2 (i.e., modulo 2), and we recall that e1, . . . , en is

the standard basis of Fn
2. For every x ∈ Fn

2 we have

dX

(
f (x), g

(
x+ yπ

2m+1

))

≤
m∑

i=0

dX

(
f
(
x+ yπ

2i

)
, g
(
x+ yπ

2i+1

))+
m−1∑

i=0

dX

(
g
(
x+ yπ

2i+1

)
, f
(
x+ yπ

2i+2

))
.

Hence, Hölder’s inequality yields the following estimate.

dX( f (x), g(x+ yπ
2m+1))

p

(2m+ 1)p−1
(221)

≤
m∑

i=0

dX

(
f
(
x+ yπ

2i

)
, g
(
x+ yπ

2i+1

))p

+
m−1∑

i=0

dX

(
g
(
x+ yπ

2i+1

)
, f
(
x+ yπ

2i+2

))p
.

Note that

yπ
2m+1 =

k+2m∑

j=1

eπ( j).
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Therefore, if π ∈ Sn is chosen uniformly at random then yπ
2m+1 is distributed uniformly

over the
(

n

k+2m

)
elements w ∈ F2 with ‖w‖1 = k + 2m. This observation implies that

(222)
1

2nn!
∑

x∈Fn
2

∑

π∈Sn

dX

(
f (x), g

(
x+ yπ

2m+1

))p = 1

2n
(

n

k+2m

)
∑

(x,y)∈Fn
2×Fn

2‖x−y‖1=k+2m

dX

(
f (x), g( y)

)p
.

Similarly, for every j ∈ {0, . . . ,2m} we have
∑

x∈Fn
2

∑

π∈Sn

dX

(
f
(
x+ yπ

j

)
, g
(
x+ yπ

j+1

))p
(223)

=
∑

π∈Sn

∑

x∈Fn
2

dX

(
f
(
x+ yπ

j

)
, g
(
x+ yπ

j + zπ
j

))p

=
∑

π∈Sn

∑

u∈Fn
2

dX

(
f (u), g

(
u+ zπ

j

))p = n!(
n

k

)
∑

(u,v)∈Fn
2×Fn

2‖u−v‖1=k

dX

(
f (u), g(v)

)p
,

where in the penultimate equality of (223) we used the fact that for each π ∈ Sn, if x is
chosen uniformly at random from Fn

2 then x + yπ
j is distributed uniformly over Fn

2, and
in the last equality of (223) we used the fact that, because ‖zπ

j ‖1 = k, if π ∈ Sn is chosen
uniformly at random then zπ

j is distributed uniformly over the
(

n

k

)
elements w ∈ F2 with

‖w‖1 = k.
A combination of (221), (222) and (223) yields the following (crude) estimate.

(224)
1

2n
(

n

k+2m

)
∑

(x,y)∈Fn
2×Fn

2‖x−y‖1=k+2m

dX

(
f (x), g( y)

)p ≤ np

2n
(

n

k

)
∑

(x,y)∈Fn
2×Fn

2‖x−y‖1=k

dX

(
f (x), g( y)

)p
.

If we fix s ∈N∩ (4τn, n] then (224) implies that for every m ∈N∩ [(s− 4τn)/2, s/2],

(225)

(
n

s−2m

)

np
(

n

s

)
∑

(x,y)∈Fn
2×Fn

2‖x−y‖1=s

dX

(
f (x), g( y)

)p ≤
∑

(x,y)∈Fn
2×Fn

2‖x−y‖1=s−2m

dX

(
f (x), g( y)

)p
.

Multiplying both sides of (225) by en
t (s−2m) and summing over m ∈N∩[(s−4τn)/2, s/2]

yields the following estimate.
∑

m∈Z∩[(s−4τn)/2,s/2]
(

n

s−2m

)
en
t (s− 2m)

np
(

n

s

)
∑

x,y∈Fn
2‖x−y‖1=s

dX

(
f (x), g( y)

)p

≤
∑

m∈Z∩[(s−4τn)/2,s/2]
en
t (s− 2m)

∑

(x,y)∈Fn
2×Fn

2‖x−y‖1=s−2m

dX

(
f (x), g( y)

)p



70 MANOR MENDEL, ASSAF NAOR

≤
∑

(x,y)∈En
t

dX

(
f (x), g( y)

)p
.

Due to (210) it follows that for every s ∈N∩ (4τn, n] we have

(226)
1(
n

s

)
∑

(x,y)∈Fn
2×Fn

2‖x−y‖1=s

dX

(
f (x), g( y)

)p ≤ 18σ np
∑

(x,y)∈En
t

dX

(
f (x), g( y)

)p
.

Now,

1
2n

∑

(x,y)∈Fn
2×Fn

2

(
e−t�δx

)
( y)dX

(
f (x), g( y)

)p

(96)= 1
2n

n∑

s=0

τ s(1− τ)n−s
∑

(x,y)∈Fn
2×Fn

2‖x−y‖1=s

d
(

f (x), g( y)
)p

(207)∧(226)≤ σ

2n

(
2+ 18np

∑

s∈Z∩(4τn,n]

(
n

s

)
τ s(1− τ)n−s

) ∑

(x,y)∈En
t

dX

(
f (x), g( y)

)p

(211)∧(219)≤ (
2+ 18npe−18τ 2n

) 1
d2n

∑

(x,y)∈En
t

dX

(
f (x), g( y)

)p

(216)≤ 3
|En

t |
∑

(x,y)∈En
t

dX

(
f (x), g( y)

)p
.

This concludes the proof of (218). �

In what follows for every n ∈N we fix Vn ⊆ Fn
2 which is a “good linear code”, i.e.,

a linear subspace over F2 with

(227) Dn
def= dim(Vn)≥ n

10
and kn

def= min
x∈Vn�{0}

‖x‖1 ≥ n

10
.

Also, we assume that the sequences {Dn}∞n=1 and {kn}∞n=1 are increasing. The essentially
arbitrary choice of the constant 10 in (227) does not play an important role in what
follows. The fact that {Vn}∞n=1 exists is simple; see [39]. We shall use the standard notation

V⊥
n

def=
{

x ∈ Fn
2 : ∀y ∈Vn,

n∑

j=1

xj yj ≡ 0 mod 2
}
.
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Lemma 7.3. — For every K, p ∈ (1,∞) there exists n(K, p) ∈ N and δ(K, p) ∈ (0,1)

with the following properties. Setting

(228) mn
def= ∣∣Fn

2/V⊥
n

∣∣ (227)= 2Dn,

there exists a sequence of connected regular graphs

{
Hn(K, p)

}∞
n=n(K,p)

such that for every integer n≥ n(K, p) the graph Hn(K, p) has mn vertices and degree

(229) dn(K, p)≤ e(log mn)
1−δ(K,p)

,

and for every K-convex Banach space X= (X,‖ · ‖X) with K(X)≤K,

(230) ∀n ∈ [n(K, p),∞)∩N, γ+
(
Hn(K, p),‖ · ‖p

X

)≤ 9p+1.

Proof. — Fix K, p ∈ (1,∞). Let A = A(K, p),B = B(K, p),C = C(K, p) be the
constants of Theorem 5.1. Recall that B > 2. Set

(231) t = t(n,K, p)
def=
(

log(2C)

knA

)1/B

,

where kn is given in (227). Then there exists n(K, p) ∈ N such that every integer n ≥
n(K, p) satisfies the assumptions of Lemma 7.2, and moreover there exists δ(K, p) ∈ (0,1)

such that for every integer n≥ n(K, p) we have

(232)
1

τ
8nτt
t

≤ e(log mn)
1−δ(K,p)

.

(To verify (232) recall that log mn =Dn log 2≥ n/20.)
Assume from now on that n ∈ N satisfies n ≥ n(K, p). Let Gn

t = (Fn
2,En

t ) be the
graph constructed in Lemma 7.2. The degree of Gn

t is

dn
t

(217)≤ 1
σ n

t

(206)≤ 1

τ
8nτt
t

(232)≤ en1−δ(K,p)

.

The desired graph Hn = Hn(K, p) is defined to be the following quotient of Gn
t .

The vertex set of Hn is Fn
2/V⊥

n . Given two cosets x+V⊥
n , y+V⊥

n ∈ Fn
2/V⊥

n , the number of
edges joining x+V⊥

n and y+V⊥
n in Hn is defined to be the number of edges of Gn

t with
one endpoint in x+V⊥

n and the other endpoint in y+V⊥
n , divided by the cardinality of

V⊥
n . Thus, the number of edges joining x+V⊥

n and y+V⊥
n in the graph Hn equals

1
|V⊥

n |
∑

(u⊥,v⊥)∈V⊥n ×V⊥n

en
t

(∥∥x− y+ (
u⊥ − v⊥

)∥∥
1

)=
∑

u⊥∈V⊥n

en
t

(∥∥x− y+ u⊥
∥∥

1

)
.



72 MANOR MENDEL, ASSAF NAOR

Hence Hn is a regular graph of the same degree as Gn
t (i.e., the degree of Hn equals dn

t ).
In what follows we let π : Fn

2 → Fn
2/V⊥

n denote the quotient map.
Fix a K-convex Banach space (X,‖ · ‖X) with K(X) ≤ K. For every f ∈

Lp(Fn
2/V⊥

n ,X) define π f : Fn
2 →X by π f (x)= f (π(x)). Thus π f is constant on the cosets

of V⊥
n . It follows from [28, Lemma 3.3] that if

∑
x∈Fn

2/V⊥n f (x)= 0 then π f ∈ L≥kn
p (Fn

2,X),
where kn is defined in (227). By Theorem 5.1 we therefore have

(233)
‖(e−t�π)f ‖Lp(Fn

2/V⊥n ,X)

‖f ‖Lp(Fn
2/V⊥n ,X)

≤Ce−Akn min{t,tB} (231)= 1
2
.

Let Q be the (Fn
2/V⊥

n )× (Fn
2/V⊥

n ) symmetric stochastic matrix corresponding to the av-
eraging operator e−t�π , i.e., the entry of Q at (x + V⊥

n , y+ V⊥
n ) ∈ (Fn

2/V⊥
n )× (Fn

2/V⊥
n )

is

(234) qx+V⊥n ,y+V⊥n
def= ((

e−t�π
)
δx+V⊥n

)(
y+V⊥

n

)=
∑

u∈a+V⊥n
v∈b+V⊥n

τ ‖a−b‖1
t (1− τt)

n−‖a−b‖1 .

Since (233) holds for all f ∈ Lp(Fn
2/V⊥

n ,X) with
∑

x∈Fn
2/V⊥n f (x)= 0, we have λ

(p)

X (Q)≤ 1
2

(recall here the notation introduced in (153)). Consequently, Lemma 6.1 implies that

γ+
(
Q,‖ · ‖p

X

)≤ 9p.

Thus every f , g : Fn
2/V⊥

n →X satisfy

1
|Fn

2/V⊥
n |2

∑

(S,T)∈(Fn
2/V⊥n )×(Fn

2/V⊥n )

∥∥ f (S)− g(T)
∥∥p

X
(235)

≤ 9p

|Fn
2/V⊥

n |
∑

(S,T)∈(Fn
2/V⊥n )×(Fn

2/V⊥n )

qS,T

∥∥ f (S)− g(T)
∥∥p

X
.

Observe that
∑

(S,T)∈(Fn
2/V⊥n )×(Fn

2/V⊥n )

qS,T

∥∥ f (S)− g(T)
∥∥p

X
(236)

(234)=
∑

(a,b)∈Fn
2×Fn

2

(
e−t�δa

)
(b)
∥∥π f (a)− πg(b)

∥∥p

X

(218)≤ 3
|En

t |
∑

(a,b)∈En
t

∥∥π f (a)− πg(b)
∥∥p

X

= 3
2ndn

t

∑

(S,T)∈(Fn
2/V⊥n )×(Fn

2/V⊥n )

( ∑

(a,b)∈S×T

En
t (a, b)

)∥∥ f (S)− g(T)
∥∥p

X
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= 3
|E(Hn)|

∑

(S,T)∈E(Hn)

∥∥ f (S)− g(T)
∥∥p

X
.

In (236) we used the fact that for every S,T ∈ Fn
2/V⊥

n , by the definition of the graph Hn,
the quantity

1
|V⊥

n |
∑

(a,b)∈S×T

En
t (a, b)

equals the number of edges joining S and T in Hn, and that since Hn is a dn
t -regular graph

we have |V⊥
n |/(2ndn

t )= 1/|E(Hn)|.
The desired estimate (230) now follows from (235) and (236). �

The case p= 2 of Corollary 7.4 below (which is nothing more than a convenient
way to restate Lemma 7.3) corresponds to Lemma 1.12.

Corollary 7.4. — For every δ ∈ (0,1) and p ∈ (1,∞) there exists n
p

0(δ) ∈N and a sequence

of regular graphs {Hp
n(δ)}∞n=n

p

0(δ)
such that for every n≥ n

p

0(δ) the graph Hp
n(δ) is regular and has mn

vertices, with mn given in (228). The degree of Hp
n(δ), denoted dp

n(δ), satisfies

(237) dp
n(δ)≤ e(log mn)

1−δ

.

Moreover, for every K-convex Banach space (X,‖ · ‖X) we have γ+(Hp
n(δ),‖ · ‖p

X) <∞ for all

integers n ≥ n
p

0(δ), and there exists δ
p

0(X) ∈ (0,1) such that for every 0 < δ ≤ δ
p

0(X) and every

integer n≥ n
p

0(δ) we have

(238) γ+
(
Hp

n(δ),‖ · ‖p

X

)≤ 9p+1.

Proof. — We shall use here the notation of Lemma 7.3. We may assume without
loss of generality that δ(K, p) decreases continuously with K and that limK→∞ δ(K, p)=
0. If δ ∈ (δ(2, p),1) then let n

p

0(δ) be the smallest integer such that (log mn)
1−δ ≥ log 3

and set Hp
n(δ) = C◦

mn
be the mn-cycle with self loops. Since in this case dp

n(δ) = 3, the
desired degree bound (237) holds true by design. Moreover, in this case the finiteness
of γ+(Hp

n(δ),‖ · ‖p

X) is a consequence of Lemma 2.1. For δ ∈ (0, δ(2, p)] we can define
Kp

δ = sup{K ∈ [2,∞) : δ(K, p)≥ δ}. Set n
p

0(δ)= n(Kp

δ, p) and for every integer n≥ n
p

0(δ)

define Hp
n(δ) = Hn(K

p

δ, p). Thus dp
n(δ) = dn(K

p

δ, p) and (237) follows from (229). Finally,
setting δ

p

0(X)= inf{δ ∈ (0, δ(2, p)] :Kp

δ ≤ 2K(X)}, it follows that for every δ ∈ (0, δ
p

0(X)]
we have Kp

δ ≥ 2K(X), so that (238) follows from (230). �

Remark 7.5. — In Remark 5.12 we asked whether Theorem 5.10 can be improved
so as to yield the estimate

(239) ‖�f ‖Lp(Fn
2,X) �X,p k‖ f ‖Lp(Fn

2,X)
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for every f ∈ L≥k
p (Fn

2,X). Here (X,‖ · ‖X) is a K-convex Banach space and the implied
constant is allowed to depend only on p ∈ (1,∞) and the K-convexity constant K(X).
If true, this would yield the following simpler proof of Lemma 7.3, with better degree
bounds. Continuing to use the notation of Lemma 7.3, we would consider instead the
“vanilla” quotient graph G on Fn

2/V⊥
n , i.e., the graph in which the number of edges

joining two cosets x+V⊥
n , y+V⊥

n equals the number of standard hypercube edges joining
these two sets divided by |V⊥

n |. The degree of this graph is n � log mn. Given a mean-
zero f : Fn

2/V⊥
n → X we think of f as being a V⊥

n -invariant function defined on Fn
2, in

which case by [28, Lemma 3.3] we have f ∈ L≥kn
p (Fn

2,X), where kn � n is given in (227).
Assuming the validity of (239),

n‖ f ‖Lp(Fn
2,X) � kn‖ f ‖Lp(Fn

2,X) �X,p ‖�f ‖Lp(Fn
2,X)(240)

=
∥∥∥∥

n∑

i=1

∂i f

∥∥∥∥
Lp(Fn

2,X)

≤
n∑

i=1

‖∂i f ‖Lp(Fn
2,X)

≤ n1−1/p

( n∑

i=1

‖∂i f ‖p

Lp(Fn
2,X)

)1/p

.

It follows that

(241)
1

22n

∑

(x,y)∈Fn
2×Fn

2

∥∥ f (x)− f ( y)
∥∥p

X
≤ 2p‖ f ‖p

Lp(Fn
2,X)

(240)

�X,p

1
n

n∑

i=1

‖∂i f ‖p

Lp(Fn
2,X).

By the definition of the quotient graph G, it follows from (241) that γ (G,X) �p,X 1.
Using Lemma 2.6 we conclude that there exists a regular graph G′ with mn/2 = 2Dn−1

vertices and degree at most a constant multiple of log mn such that γ+(G′,X) �p,X 1.

8. Graph products

The purpose of this section is to recall the definitions of the various graph products
that were mentioned in the introduction, and to prove Theorem 1.13.

8.1. Sub-multiplicativity for tensor products. — The case of tensor products, i.e., part (I)
of Theorem 1.13, is very simple, and should mainly serve as warmup for the other parts
of Theorem 1.13.

Proposition 8.1 (Sub-multiplicativity for tensor products). — Fix m, n ∈N. Let A= (aij) be

an m×m symmetric stochastic matrix and let B= (bij) be an n× n symmetric stochastic matrix. Then

every kernel K :X×X→[0,∞) satisfies

(242) γ+(A⊗ B,K)≤ γ+(A,K)γ+(B,K).
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Proof. — Fix f , g : {1, . . . ,m} × {1, . . . , n} → X. Then for every fixed s, t ∈
{1, . . . , n},

(243)
1

m2

m∑

i=1

m∑

j=1

K
(

f (i, s), g( j, t)
)≤ γ+(A,K)

m

m∑

i=1

m∑

j=1

aijK
(

f (i, s), g( j, t)
)
.

Also, for every fixed i, j ∈ {1, . . . ,m} we have

(244)
1
n2

m∑

s=1

m∑

t=1

K
(

f (i, s), g( j, t)
)≤ γ+(B,K)

n

n∑

s=1

n∑

t=1

bstK
(

f (i, s), g( j, t)
)
.

Consequently,

1
m2n2

m∑

i=1

m∑

j=1

n∑

s=1

n∑

t=1

K
(

f (i, s), g( j, t)
)

(245)

= 1
n2

n∑

s=1

n∑

t=1

1
m2

m∑

i=1

m∑

j=1

K
(

f (i, s), g( j, t)
)

(243)≤ 1
n2

n∑

s=1

n∑

t=1

γ+(A,K)

m

m∑

i=1

m∑

j=1

aijK
(

f (i, s), g( j, t)
)

= γ+(A,K)

m

m∑

i=1

m∑

j=1

aij

1
n2

m∑

s=1

m∑

t=1

K
(

f (i, s), g( j, t)
)

(244)≤ γ+(A,K)

m

m∑

i=1

m∑

j=1

aij

γ+(B,K)

n

n∑

s=1

n∑

t=1

bstK
(

f (i, s), g( j, t)
)

= γ+(A,K)γ+(B,K)

mn

m∑

i=1

m∑

j=1

n∑

s=1

n∑

t=1

(A⊗ B)ijstK
(

f (i, s), g( j, t)
)
.

Since (245) holds for every f , g : {1, . . . , n} × {1, . . . ,m}→X, (242) follows. �

This concludes the proof of part (I) of Theorem 1.13. Nevertheless, when the kernel
in question is the pth power of a norm whose modulus of convexity has power type p it is
possible improve Proposition 8.1 as follows.

Lemma 8.2. — Fix m, n ∈ N and p ∈ [2,∞). Let A = (aij) be an m × m symmetric

stochastic matrix and let B= (bij) be an n× n symmetric stochastic matrix. Suppose that (X,‖ · ‖X)

is a Banach space that satisfies the p-uniform convexity inequality (163). Then

(246) γ+
(
A⊗B,‖ · ‖p

X

)≤ 2p−1 max
{
γ+
(
A,‖ · ‖p

X

)
,
(
2p−1− 1

)
Kp(X)pγ+

(
B,‖ · ‖p

X

)}
.
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Proof. — For simplicity of notation write

c
def= 1

(2p−1 − 1)Kp(X)p
,

and

(247) Γ
def= 2p−1 max

{
γ+
(
A,‖ · ‖p

X

)
,

1
c
γ+
(
B,‖ · ‖p

X

)}
.

Fix f , g : {1, . . . ,m} × {1, . . . , n} →X. For every i, j ∈ {1, . . . ,m} and s ∈ {1, . . . , n} con-
sider the X-valued random variable Us

ij which, for every t ∈ {1, . . . ,m}, takes the value
f (i, s)− g( j, t) with probability bst . An application of Lemma 6.5 with U=Us

ij shows that
if for every j ∈ {1, . . . ,m} and s ∈ {1, . . . , n} we define

h( j, s)
def=

n∑

t=1

bstg( j, t),

then for every i, j ∈ {1, . . . ,m} and s ∈ {1, . . . , n} we have

∥∥ f (i, s)− h( j, s)
∥∥p

X
+ c

n∑

t=1

bst

∥∥h( j, s)− g( j, t)
∥∥p

X
(248)

≤
n∑

t=1

bst

∥∥ f (i, s)− g( j, t)
∥∥p

X
.

By the definition of γ+(A,‖ · ‖p

X), for every fixed s ∈ {1, . . . , n} we have

1
m2

m∑

i=1

m∑

j=1

∥∥ f (i, s)− h( j, s)
∥∥p

X
(249)

≤ γ+(A,‖ · ‖p

X)

m

m∑

i=1

m∑

j=1

aij

∥∥ f (i, s)− h( j, s)
∥∥p

X
.

Similarly, for every fixed j ∈ {1, . . . ,m} we have

(250)
1
n2

n∑

s=1

n∑

t=1

∥∥h( j, s)− g( j, t)
∥∥p

X
≤ γ+(B,‖ · ‖p

X)

n

n∑

s=1

n∑

t=1

bst

∥∥h( j, s)− g( j, t)
∥∥p

X
.

By the triangle inequality, for every fixed i, j ∈ {1, . . . ,m} and s ∈ {1, . . . , n} we have

(251)
1
n

n∑

t=1

∥∥ f (i, s)− g( j, t)
∥∥p

X
≤ 2p−1

∥∥ f (i, s)−h( j, s)
∥∥p

X
+ 2p−1

n

n∑

t=1

∥∥h( j, s)− g( j, t)
∥∥p

X
.
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By averaging (251) over i, j ∈ {1, . . . ,m} and s ∈ {1, . . . , n} we deduce that

1
m2n2

m∑

i=1

m∑

j=1

n∑

s=1

n∑

t=1

∥∥ f (i, s)− g( j, t)
∥∥p

X
(252)

≤ 2p−1

n

n∑

s=1

1
m2

m∑

i=1

m∑

j=1

∥∥ f (i, s)− h( j, s)
∥∥p

X

+ 2p−1

m

m∑

j=1

1
n2

n∑

s=1

n∑

t=1

∥∥h( j, s)− g( j, t)
∥∥p

X
.

By substituting (249) and (250) into (252) we obtain the estimate

1
m2n2

m∑

i=1

m∑

j=1

n∑

s=1

n∑

t=1

∥∥ f (i, s)− g( j, t)
∥∥p

X
(253)

≤ 2p−1γ+(A,‖ · ‖p

X)

mn

m∑

i=1

m∑

j=1

n∑

s=1

aij

∥∥ f (i, s)− h( j, s)
∥∥p

X

+ 2p−1γ+(B,‖ · ‖p

X)

mn

n∑

s=1

n∑

t=1

m∑

j=1

bst

∥∥h( j, s)− g( j, t)
∥∥p

X

(247)≤ Γ

mn

m∑

i=1

n∑

j=1

aij

n∑

s=1

(∥∥ f (i, s)− h( j, s)
∥∥p

X

+ c

n∑

t=1

bst

∥∥h( j, s)− g( j, t)
∥∥p

X

)

(248)≤ Γ

mn

m∑

i=1

n∑

j=1

n∑

s=1

n∑

t=1

aijbst

∥∥ f (i, s)− g( j, t)
∥∥p

X
.

Since (253) holds for every f , g : {1, . . . ,m} × {1, . . . , n}→X, (246) follows. �

8.2. Sub-multiplicativity for the zigzag product. — Here we prove Theorem 1.3. Before
doing so, we need to recall the definition of the zigzag product of Reingold, Vadhan and
Wigderson [67]. The notation used below, which lends itself well to the ensuing proof of
Theorem 1.3, was suggested to us by K. Ball.

Fix n1, d1, d2 ∈ N. Suppose that G1 = (V1,E1) is an n1-vertex graph which is d1-
regular and that G2 = (V2,E2) is a d1-vertex graph which is d2-regular. Since the number
of vertices in G2 is the same as the degree of G1, we can identify V2 with the edges
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FIG. 2. — A schematic illustration of the zigzag product. The upper part of the figure depicts part of a 4-regular graph G1,
and a 4-vertex cycle G2. The bottom part of the figure depicts the edges of the zigzag product between u’s cloud and v’s
cloud. The original edges of G1 and G2 are drawn as dotted and dashed lines, respectively.

emanating from a given vertex u ∈V1. Formally, we fix for every u ∈V1 a bijection

(254) πu :
{
(u, v) ∈ {u} ×V1 : (u, v) ∈ E1

}→V2.

Moreover, we fix for every a ∈V2 a bijection between {1, . . . , d2} and the multiset of the
vertices adjacent to a in G2, i.e.,

(255) κa : {1, . . . , d2}→
{
b ∈V2 : (a, b) ∈ E2

}
.

The zigzag product G1 z©G2 is the graph whose vertices are V1 × V2 and the
ordered pair ((u, a), (v, b)) ∈V1 ×V2 is added to E(G1 z©G2) whenever there exist i, j ∈
{1, . . . , d2} satisfying

(256) (u, v) ∈ E1 and a= κπu(u,v)(i) and b= κπv(v,u)( j).

Thus,

E(G1 z©G2)
(
(u, a), (v, b)

) def=
d2∑

i=1

d2∑

j=1

E1(u, v) · 1{a=κπu(u,v)(i)} · 1{b=κπv(u,v)( j)}.

The schematic description of this construction is as follows. Think of the vertex
set of G1 z©G2 as a disjoint union of “clouds” which are copies of V2 = {1, . . . , d1} in-
dexed by V1. Thus (u, a) is the point indexed by a in the cloud labeled by u. Every edge
((u, a), (v, b)) of G1 z©G2 is the result of a three step walk: a “zig” step in G2 from a to
πu(u, v) in u’s cloud, a “zag” step in G1 from u’s cloud to v’s cloud along the edge (u, v)

and a final “zig” step in G2 from πv(u, v) to b in v’s cloud. The zigzag product is illus-
trated in Figure 2. The number of vertices of G1 z©G2 is n1d1 and its degree is d2

2 . The
zigzag product depends on the choice of labels {πu}u∈V1, and in fact different labels of the
same graphs can produce non-isomorphic products.3 However, the estimates below will

3 The labels {κa}a∈V2 do not affect the structure of the zigzag product but they are useful in the subsequent analysis.
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be independent of the actual choice of the labeling, so while our notation should formally
depend on the labeling, we will drop its explicit mention for the sake of simplicity.

Proof of Theorem 1.3. — Fix f , g :V1×V2 →X. The definition of γ+(G1,K) implies
that for all a, b ∈V2 we have

(257)
1
n2

1

∑

(u,v)∈V1×V1

K
(

f (u, a), g(v, b)
)≤ γ+(G1,K)

n1d1

∑

(u,v)∈E1

K
(

f (u, a), g(v, b)
)
.

Hence,

1
|V1 ×V2|2

∑

((u,a),(v,b))∈(V1×V2)×(V1×V2)

K
(

f (u, a), g(v, b)
)

(258)

= 1
d2

1

∑

(a,b)∈V2×V2

1
n2

1

∑

(u,v)∈V1×V1

K
(

f (u, a), g(v, b)
)

(257)≤ γ+(G1,K)

n1d3
1

∑

(a,b)∈V2×V2

∑

(u,v)∈E1

K
(

f (u, a), g(v, b)
)
.

Next, fix u ∈V1 and b ∈V2, and define φu
b :V2 →X as follows. Recalling (254), for c ∈V2

write π−1
u (c)= (u, v) ∈ E1 for some v ∈V1, and define φu

b(c)= g(v, b). The definition of
γ+(G2,K) implies that

1
d2

1

∑

a∈V2

∑

v∈V1
(u,v)∈E1

K
(

f (u, a), g(v, b)
)

(259)

= 1
d2

1

∑

a∈V2

∑

c∈V2

K
(

f (u, a),φu
b(c)

)

≤ γ+(G2,K)

d1d2

∑

v∈V1
(u,v)∈E1

d2∑

i=1

K
(

f
(
u, κπu(u,v)(i)

)
, g(v, b)

)
.

Summing (259) over u ∈ V1 and b ∈ V2 and substituting the resulting expression
into (258) yields the bound

1
|V1 ×V2|2

∑

((u,a),(v,b))∈(V1×V2)×(V1×V2)

K
(

f (u, a), g(v, b)
)

(260)

≤ γ+(G1,K)γ+(G2,K)

n1d2
1 d2

∑

v∈V1

d2∑

i=1

∑

u∈V1
(u,v)∈E1

∑

b∈V2

K
(

f
(
u, κπu(u,v)(i)

)
, g(v, b)

)
.
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Fix i ∈ {1, . . . , d2} and v ∈ V1, and define ψv
i : V2 → X as follows. For c ∈ V2 write

π−1
v (c) = (v, u) for some u ∈ V1 such that (v, u) ∈ E1 (equivalently, (u, v) ∈ E1), and set

ψv
i (c)= f (u, κπu(u,v)(i)). Another application of the definition of γ+(G2,K) implies that

1
d2

1

∑

u∈V1
(u,v)∈E1

∑

b∈V2

K
(

f
(
u, κπu(u,v)(i)

)
, g(v, b)

)
(261)

= 1
d2

1

∑

c∈V2

∑

b∈V2

K
(
ψv

i (c), g(v, b)
)

≤ γ+(G2,K)

d1d2

∑

u∈V1
(u,v)∈E1

d2∑

j=1

K
(

f
(
u, κπu(u,v)(i)

)
, g
(
v, κπv(v,u)( j)

))
.

Summing (261) over v ∈ V1 and i ∈ {1, . . . , d2}, and combining the resulting inequality
with (260), yields the bound

1
|V1 ×V2|2

∑

((u,a),(v,b))∈(V1×V2)×(V1×V2)

K
(

f (u, a), g(v, b)
)

(262)

≤ γ+(G1,K)γ+(G2,K)2

n1d1d2
2

×
∑

(u,v)∈E1

d2∑

i=1

d2∑

j=1

K
(

f
(
u, κπu(u,v)(i)

)
, g
(
v, κπv(v,u)( j)

))

(256)= γ+(G1,K)γ+(G2,K)2

n1d1d2
2

∑

((u,a),(v,b))E(G1 z©G2)

K
(

f (u, a), g(v, b)
)
.

Since (262) holds for every f , g :V1 ×V2 →X, the proof of Theorem 1.3 is complete. �

8.3. Sub-multiplicativity for replacement products. — Here we continue to use the nota-
tion of Section 8.2. Specifically, we fix n1, d1, d2 ∈N and suppose that G1 = (V1,E1) is an
n1-vertex graph which is d1-regular and that G2 = (V2,E2) is a d1-vertex graph which is
d2-regular. We also identify V1 = {1, . . . , n1} and V2 = {1, . . . , d1}, and for every u ∈ V1

and a ∈V2 we fix a bijections πu and κa as in (254) and (255), respectively. The replacement

product [17, 67] of G1 and G2, denoted G1 r©G2, is the graph with vertex set {1, . . . , n1}×
{1, . . . , d1} in which the ordered pair ((u, i), (v, j)) ∈ {1, . . . , n1} × {1, . . . , d1} is added to
E(G1 r©G2) if and only if either u= v and (i, j) ∈ E2 or (u, v) ∈ E1 and i = πu(u, v) and
j = πv(v, u). Thus,

E(G1 r©G2)
(
(u, i), (v, j)

) def= E2(i, j) ·1{u=v}+E1(u, v) ·1{i=πu(u,v)} ·1{j=πv(v,u)}.
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This definition makes G1 r©G2 be a (d2 + 1)-regular graph.
The following lemma shows that the “discrete gradient” associated to G1 z©G2 is

dominated by 3p−1(d2 + 1) times the “discrete gradient” associated to G1 r©G2.

Lemma 8.3. — Fix p ∈ [1,∞), a metric space (X, dX) and n1, d1, d2 ∈ N. Suppose that

G1 = (V1,E1) is an n1-vertex graph which is d1-regular and that G2 = (V2,E2) is a d1-vertex graph

which is d2-regular. Then every f , g :V1 ×V2 →X satisfy

1
|E(G1 z©G2)|

∑

((u,a),(v,b))∈E(G1 z©G2)

dX

(
f (u, a), g(v, b)

)p
(263)

≤ 3p−1(d2 + 1)

|E(G1 r©G2)|
∑

((u,a),(v,b))∈E(G1 r©G2)

dX

(
f (u, a), g(v, b)

)p
.

Before proving Lemma 8.3 we record two of its immediate (yet useful) conse-
quences.

Corollary 8.4. — Under the assumptions of Lemma 8.3 we have

γ+
(
G1 r©G2, d

p

X

)≤ 3p−1(d2 + 1) · γ+
(
G1 z©G2, d

p

X

)
.

Now, part (IV) of Theorem 1.13 corresponds to the case p = 2 of the following
combination of Theorem 1.3 and Corollary 8.4.

Corollary 8.5. — Under the assumptions of Lemma 8.3 we have

γ+
(
G1 r©G2, d

p

X

)≤ 3p−1(d2 + 1) · γ+
(
G1, d

p

X

) · γ+
(
G2, d

p

X

)2
.

Proof of Lemma 8.3. — Fix ((u, a), (v, b)) ∈ E(G1 z©G2). Thus by the definition of
the zigzag product we have (u, v) ∈ E1 and (a,πu(u, v)), (b,πv(v, u)) ∈ E2. Observe that
the following three pairs are edges of G1 r©G2.

(
(u, a), u,πu(u, v)

)
, ((u,πu(u, v),

(
v,πv(v, u)

)
,
(
v,πv(v, u), (v, b)

)
.

By the triangle inequality,

dX

(
f (u, a), g(v, b)

)p
(264)

≤ 3p−1
(
dX

(
f (u, a), g

(
u,πu(u, v)

))p

+ dX

(
g
(
u,πu(u, v)

)
, f
(
v,πv(v, u)

))p + dX

(
f
(
v,πv(v, u)

)
, g(v, b)

))p
).

Therefore,

1
|E(G1 z©G2)|

∑

((u,a),(v,b))∈E(G1 z©G2)

dX

(
f (u, a), g(v, b)

)p
(265)



82 MANOR MENDEL, ASSAF NAOR

= 1
n1d1d2

2

∑

(u,v)∈E1

∑

a∈V2
(a,πu(u,v))∈E2

∑

b∈V2
(b,πv(v,u))∈E2

dX

(
f (u, a), g(v, b)

)p

(264)≤ 3p−1

n1d1d2
2

(S1 + S2 + S3),

where the quantities S1,S2,S3 are defined as follows.

S1
def=

∑

(u,v)∈E1

∑

a∈V2
(a,πu(u,v))∈E2

∑

b∈V2
(b,πv(v,u))∈E2

dX

(
f (u, a), g

(
u,πu(u, v)

))p

= d2

∑

(u,v)∈E1

∑

a∈V2
(a,πu(u,v))∈E2

dX

(
f (u, a), g

(
u,πu(u, v)

))p
,

S2
def=

∑

(u,v)∈E1

∑

a∈V2
(a,πu(u,v))∈E2

∑

b∈V2
(b,πv(v,u))∈E2

dX

(
g
(
u,πu(u, v)

)
, f
(
v,πv(v, u)

))p

= d2
2

∑

(u,v)∈E1

dX

(
g
(
u,πu(u, v)

)
, f
(
v,πv(v, u)

))p
,

S3
def=

∑

(u,v)∈E1

∑

a∈V2
(a,πu(u,v))∈E2

∑

b∈V2
(b,πv(v,u))∈E2

dX

(
f
(
v,πv(v, u)

)
, g(v, b)

)
)p

= d2

∑

(u,v)∈E1

∑

b∈V2
(b,πv(v,u))}∈E2

dX

(
f
(
v,πv(v, u)

)
, g(v, b)

)
)p.

By the definition of the replacement product we have

S1 + S2 + S3(266)

= d2

∑

u∈V1

∑

(i,j)∈E2

dX

(
f (u, i), g(u, j)

)p

+ d2
2

∑

(u,v)∈E1

dX

(
g
(
u,πu(u, v)

)
, f
(
v,πv(v, u)

))p

≤ d2
2

∑

((u,i),(v,j))∈E(G1 r©G2)

dX

(
f (u, i), g(v, j)

)p
.

Recalling that |E(G1 r©G2)| = n1d1(d2 + 1), the desired estimate (263) is now a conse-
quence of (265) and (266). �
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The balanced replacement product of G1 and G2, denoted G1 b©G2, is a useful variant
of G1 r©G2 that was introduced in [67]. The vertex set of G1 b©G2 is still {1, . . . , n1} ×
{1, . . . , d1}, but the edges of G1 b©G2 are now given by

∀((u, i), (v, j)
) ∈ {1, . . . , n1} × {1, . . . , d1},

E(G1 b©G2)
(
(u, i), (v, j)

)

def= E2(i, j) · 1{u=v} + d2E1(u, v) · 1{i=πu(u,v)} · 1{j=πv(v,u)}.

This definition makes G1 b©G2 be a 2d2-regular graph.
Arguing analogously to the proof of Lemma 8.3, we have the following statements.

Lemma 8.6. — Fix p ∈ [1,∞), a metric space (X, dX) and n1, d1, d2 ∈ N. Suppose that

G1 = (V1,E1) is an n1-vertex graph which is d1-regular and that G2 = (V2,E2) is a d1-vertex graph

which is d2-regular. Then every f , g :V1 ×V2 →X satisfy

1
|E(G1 z©G2)|

∑

((u,a),(v,b))∈E(G1 z©G2)

dX

(
f (u, a), g(v, b)

)p
(267)

≤ 2 · 3p−1

|E(G1 b©G2)|
∑

((u,a),(v,b))∈E(G1 b©G2)

dX

(
f (u, a), g(v, b)

)p
.

Corollary 8.7. — Under the assumptions of Lemma 8.6 we have

γ+
(
G1 b©G2, d

p

X

)≤ 2 · 3p−1 · γ+
(
G1 z©G2, d

p

X

)
.

Part (V) of Theorem 1.13 corresponds to the case p= 2 of the following combination of
Theorem 1.3 and Corollary 8.7.

Corollary 8.8. — Under the assumptions of Lemma 8.6 we have

γ+
(
G1 b©G2, d

p

X

)≤ 2 · 3p−1 · γ+
(
G1, d

p

X

) · γ+(G2, d
p

X)2.

Remark 8.9. — An analysis of the behavior of spectral gaps under the balanced
replacement product was previously performed in a non-Euclidean setting by Alon,
Schwartz and Shapira [1]. Specifically, [1, Theorem 1.3] estimates the edge expansion
of G1 b©G2 in terms of the edge expansion of G1 and G2 via a direct combinatorial argu-
ment. The edge expansion of a graph G is equivalent up to universal constant factors to
γ (G, | · |), where | · | is the standard absolute value on R. The corresponding bound aris-
ing from Corollary 8.8 is better than the bound of [1, Theorem 1.3] in terms of constant
factors.
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8.4. Sub-multiplicativity for derandomized squaring. — Here we continue to use the no-
tation of Section 8.2 and Section 8.3. The derandomized squaring of G1 and G2, as
introduced by Rozenman and Vadhan in [69] and denoted G1 s©G2, is defined as fol-
lows. The vertex set of G1 s©G2 is V1 = {1, . . . , n1}, and the edges E(G1 s©G2) are given
by

∀(u, v) ∈V1 ×V1,

E(G1 s©G2)(u, v)

def=
∑

w∈V1

E1(w, u)E1(w,v)E2

(
πw(w, u),πw(w,v)

)
.

Thus, given (u, v) ∈V1 ×V1, we add a copy of (u, v) to E(G1 s©G2) for every (i, j) ∈ E2

such that there exists w ∈ V1 with (w, u), (w,v) ∈ E1 and πw(w, u) = i,πw(w,v) = j.
With this definition one checks that G1 s©G2 is d1d2-regular.

The following proposition corresponds to part (III) of Theorem 1.13.

Proposition 8.10. — Fix n1, d1, d2 ∈ N and suppose that G1 = (V1,E1) is an n1-vertex

graph which is d1-regular and that G2 = (V2,E2) is a d1-vertex graph which is d2-regular. Then for

every kernel K :X×X→[0,∞) we have

(268) γ+(G1 s©G2,K)≤ γ+
(
G2

1,K
)
γ+(G2,K).

In [69] Rozenman and Vadhan used a spectral argument to prove the Euclidean case
of (268), i.e., the special case of (268) when K : R× R→ [0,∞) is given by K(x, y) =
(x− y)2.

Proof of Proposition 8.10. — Fix f , g : V1 →X. The definition of γ+(G2
1,K) implies

that

1
n2

1

∑

(u,v)∈V1×V1

K
(

f (u), f (v)
)≤ γ+(G2

1,K)

n1d2
1

∑

(u,v)∈E(G2
1)

K
(

f (u), f (v)
)

(269)

= γ+(G2
1,K)

n1d2
1

∑

w∈V1

∑

(u,w)∈E1

∑

(w,v)∈E1

K
(

f (u), g(v)
)
.

For every fixed w ∈ V1 define φw,ψw : V2 → X as follows. For i, j ∈ V2 consider the
unique vertices u, v ∈ V1 such that πw(w, u) = i and πw(w,v) = j, and define φw(i) =
f (u) and ψw(j)= g(v). The definition of γ+(G2,K) implies that

1
d2

1

∑

(u,w)∈E1

∑

(w,v)∈E1

K
(

f (u), g(v)
)= 1

d2
1

∑

(i,j)∈V2×V2

K
(
φw(i),ψw(j)

)
(270)
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≤ γ+(G2,K)

d1d2

∑

(i,j)∈E2

K
(
φw(i),ψw( j)

)

= γ+(G2,K)

d1d2

∑

(u,w)∈E1

∑

(w,v)∈E1

E2

(
πw(w, u),πw(w,v)

)
K
(

f (u), g(v)
)
.

The definition of G1 s©G2 in combination with (269) and (270) now yields the estimate

1
n2

1

∑

(u,v)∈V1×V1

K
(

f (u), f (v)
)

≤ γ+(G2
1,K)γ+(G2,K)

n1d1d2

×
∑

w∈V1

∑

(u,w)∈E1

∑

(w,v)∈E1

E2

(
πw(w, u),πw(w,v)

)
K
(

f (u), g(v)
)

= γ+(G2
1,K)γ+(G2,K)

n1d1d2

∑

(x,y)∈E(G1 s©G2)

K
(

f (x), g( y)
)
.

�

9. Counterexamples

9.1. Expander families need not embed coarsely into each other. — As was mentioned in
the introduction, it is an open question whether every classical (i.e., Euclidean) expander
graph family is also a super-expander. Here we rule out the most obvious approach
towards such a result: to embed coarsely any expander family in any other expander
family. Formally, given two families of metric spaces X ,Y , we say that X admits a
coarse embedding into Y if there exist non-decreasing α,β : [0,∞)→ [0,∞) satisfy-
ing limt→∞ α(t) =∞ such that for every (X, dX) ∈X there exists (Y, dY) ∈ Y and a
mapping f :X→ Y that satisfies

∀x, y ∈X, α
(
dX(x, y)

)≤ dY

(
f (x), f ( y)

)≤ β
(
dX(x, y)

)
.

This condition clearly implies that α(0) = 0, and for notational convenience we also
assume without loss of generality that β(0)= 0.

Let C denote the set of all increasing sub-additive functions ω : [0,∞)→ [0,∞)

with ω(0)= 0. If (X, dX) is a metric space and ω ∈ C then (X,ω ◦ dX) is also a metric
space, known as the metric transform of (X, dX) by ω.

In what follows, given a connected graph G= (V,E), the geodesic metric induced
by G on V will be denoted dG. Recall that a sequence of graphs {Gn}∞n=1 is called a con-
stant degree expander sequence if there exists d ∈N such that each Gn is d-regular and
supn∈N λ(Gn) < 1. The purpose of this section is to prove the following result.
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Theorem 9.1. — There exist two constant degree expander sequences {Gi}∞i=1 and {Hi}∞i=1 such

that {(V(Hi), dHi
)}∞i=1 does not admit a coarse embedding into the family of metric spaces {(V(Gi),ω◦

dGi
) : (i,ω) ∈N×C }.

Proof. — It is well known (see e.g. [37, 40]) that there exists c ∈ (0,∞), an integer
d ≥ 3, and a sequence of d-regular expanders {Gi}∞i=1 such that if we set ni = |V(Gi)| then
{ni}∞i=1 is strictly increasing and each Gi has girth at least 4c log ni. By adjusting c to be a
smaller constant if necessary (as we may), we assume below that

(271) c log ni <
ni

2(d + 1)2c log ni
.

We also assume throughout the ensuing argument that c log ni > 7 for all i ∈N.
The desired expander sequence {Hi}∞i=1 will be constructed by modifying {Gi}∞i=1 so

as to contain sufficiently many short cycles. Specifically, fix i ∈N and write Gi = (Vi,Ei).
We will construct Hi = (Vi,Fi) with Fi � Ei , i.e., Hi will be a graph with the same vertices
as Gi but with additional edges. The construction will ensure that

(272) diam(Hi)≥ c

2
log ni.

(Here, and in what follows, diameters of graphs are always understood to be with respect
to their shortest-path metric.) We will also ensure that for every integer h ∈ [3, c log ni]
the graph Hi contains a cycle of length h which is embedded isometrically into (Hi, dHi

),
i.e., there exist x1, . . . , xh ∈ Vi such that dHi

(xa, xb) = min{|a − b|, h − |a − b|} for every
a, b ∈ {1, . . . , h}, and {x1, x2}, {x2, x3}, . . . , {xh−1, xh}, {xh, x1} ∈ Fi .

Set

(273) 	
def= �c log ni�.

We will define inductively sets of edges E = F0 � F1 � · · · � F	 with |Fj � Fj−1| = 1 for
all j ∈ {1, . . . , 	}. Fix j ∈ {0, . . . , 	− 1} and assume inductively that Fj has already been
defined so that the graph

Gj

i

def= (
Vi,F j

)

has maximal degree at most d + 1. Write

Mj
def= {

u ∈Vi : ∃e ∈ Fj � E, u ∈ e
}=

⋃

e∈Fj
�E

e.

Thus |Mj| ≤ 2j. Hence, if we set

Dj
def= {

u ∈Vi : dGj

i
(u,Mj)≤ 2c log ni

}
,
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then

|Dj| ≤ 2j(d + 1)2c log ni ≤ 2	(d + 1)2c log ni
(271)∧(273)

< ni.

Therefore V � Dj �= ∅. Choose an arbitrary vertex x ∈V � Dj . Since Gi has girth at least
4c log ni and j ≤ 	, there exists y ∈ V with dGi

(x, y) = j + 2. Define Fj+1 = Fj ∪ {{x, y}}.
This creates a new cycle of length j + 3.

By construction, the graph Gj+1
i

def= (Vi,Fj+1) contains a cycle Ch of length h for
every h ∈ {3, . . . , j+ 3}. Moreover, we claim that these cycles are embedded isometrically
into the metric space (Vi, dGj+1

i
). Indeed, due to the choice of x, if h ∈ {3, . . . , j + 2} then

dGj

i

(
Ch, {x, y})> 2c log ni − ( j + 2),

which is at least h/2 (the diameter of Ch) because c log ni > 7. Thus the new edge {x, y}
does not change the isometric embeddability of Ch. The new cycle Cj+3 is isometrically
embedded into (Vi, dGi

) since the girth of Gi is at least 4c log ni > 2( j + 2). Since

dGj

i
(Mj,Cj+3) > 2c log ni − ( j + 2) >

j + 3
2

.

The cycle Cj+3 remains isometrically embedded into (Vi, dGj+1
i

). Note also that by con-
struction the new edge {x, y} is not incident to any vertex in Mj . Therefore the maximum
degree of (Vi,Fj+1) remains d + 1. This completes the inductive construction.

The degree of every vertex of G	+1
i is either d or d + 1. Add to every vertex of

degree d a self loop so as to obtain a d + 1 regular graph Hi = (Vi,Fi) without changing
the induced shortest path metric. Note that (272) holds true because D	 �=Vi .

It follows from Lemma 2.7 that for every kernel K :X×X→[0,∞),

γ (Hi,K)≤ d + 1
d

γ (Gi,K) and γ+(Hi,K)≤ d + 1
d

γ+(Gi,K).

In particular, since {Gi}∞i=1 is an expander sequence also {Hi}∞i=1 is an expander sequence.
Assume for the sake of obtaining a contradiction that {(Vi, dHi

}∞i=1 admits a coarse
embedding into {(Vi,ω ◦ dGi

) : (i,ω) ∈N× C }. Then there exist {ωi}∞i=1 ⊆ C and non-
decreasing moduli α,β : [0,∞)→[0,∞) with

(274) lim
t→∞α(t)=∞,

and for every i ∈N there exists j(i) ∈N and fi :Vi →Vj(i) satisfying

(275) ∀u, v ∈V(Hi), α
(
dHi

(u, v)
)≤ ωi

(
dGj(i)

(
fi(u), fi(v)

))≤ β
(
dHi

(u, v)
)
.

Note that only the values of β on N ∪ {0} matter here, and that since β(·) serves only
as an upper bound in (275) we may assume without loss of generality that the sequence
{β(n)}∞n=0 is strictly increasing.
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Define

(276) hi
def=
⌊

1
3

min
{
β−1

(⌊
ωi(c log nj(i))

⌋)
, c log ni

}⌋
.

We claim that

(277) lim
i→∞

hi =∞.

Indeed, since {Gj}∞j=1 is an expander sequence,

λ
def= sup

j∈N
λ(Gj) < 1.

We therefore have the following bound on the diameter of Gi (see [13]):

(278) diam(Gj)≤ 2 log nj

log(1/λ)
.

Observe that since Gj has girth at least 4c log nj , it follows from (278) that c log(1/λ)≤ 1.
It now follows from (272), (275) and (278) that

(279) α

(
c

2
log ni

)
≤ ωi

(
2 log nj(i)

log(1/λ)

)
≤ 4

c log(1/λ)
ωi(c log nj(i)),

where in the rightmost inequality of (279) we used the fact that ωi is increasing and sub-
additive. Due to (274) and (276), we indeed have (277) as a consequence of (279).

Our construction ensures that Hi contains a cycle C def= {x1, . . . , x3hi
} of length 3hi

which is embedded isometrically into (Hi, dHi
). Then

(280) fi(C)
(275)⊆ BGj(i)

(
fi(x1),ω

−1
i

(
β(3hi)

)) (276)⊆ BGj(i)

(
fi(x1), c log nj(i)

)
.

Since c log nj(i) is smaller than half the girth of Gj(i), the ball BGj(i)
( fi(x1), c log nj(i)) is iso-

metric to a tree. We will now proceed to show that combined with the inclusion (280) this
leads to a contraction, using a coarse version of an argument of Rabinovich and Raz [65].

Let C denote the one dimensional simplicial complex induced by C, i.e., in C,
which is isometric to the circle 3hi

2π
S1, all the edges of C are present as intervals of

length 1. Similarly, denote by T the one dimensional simplicial complex induced by
BGj(i)

( fi(x1), c log nj(i)) (thus T is isometric to a metric tree). Let f i : C→ T be the linear
interpolation of fi , i.e., the extension of fi to C such that for every u, v ∈C with {u, v} ∈ Fi

the segment [u, v] is mapped onto the unique geodesic [ fi(u), fi(v)] ⊆ T with constant
speed (see e.g. the discussion preceding Theorem 2 of [55]). It follows from (275) that

dGj(i)

(
fi(u), fi(v)

)≤ ω−1
i

(
β(1)

)
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whenever {u, v} is an edge of Hi . Hence fi is ω−1
i (β(1))-Lipschitz. Therefore f i is also

ω−1
i (β(1))-Lipschitz.

Consider the three paths

fi
([x1, xhi+1]

)
, fi
([xhi+1, x2hi+1]

)
, fi
([x2hi+1, x1]

)⊆T.

Arguing as in [65], since T is a metric tree, there must exist a common point

p ∈ fi
([x1, xhi+1]

)∩ fi
([xhi+1, x2hi+1]

)∩ fi
([x2hi+1, x1]

)
.

We can therefore find

(a, b, c) ∈ [x1, xhi+1] × [xhi+1, x2hi+1] × [x2hi+1, x1]
such that

fi(a)= fi(b)= fi(c)= p.

By considering the closest points to a, b, c in C, there exist a, b, c ∈C such that

max
{
dC(a, a), dC(b, b), dC(c, c)

}≤ 1
2
,

and

max
{
dHi

(a, b), dHi
(a, c), dHi

(b, c)
}≥ hi.

Without loss of generality we may assume that dHi
(a, b)= dC(a, b)≥ hi .

Since f i is ω−1
i (β(1))-Lipschitz and f (a)= f (b),

α(hi)
(275)≤ ωi

(
dGj(i)

(
fi(a), fi(b)

))≤ ωi

(
dGj(i)

(
f (a), f (a)

)+ dGj(i)

(
f (b), f (b)

))
(281)

≤ ωi

(
2ω−1

i

(
β(1)

)1
2

)
= β(1).

The desired contradiction now follows by contrasting (274) and (277) with (281). �

9.2. A metric space failing calculus for nonlinear spectral gaps. — Let (X, dX) be a metric
space and p ∈ (0,∞). Observe that if A = (aij) is an n× n symmetric stochastic matrix
then, provided X contains at least two points, the fact that γ+(A, d

p

X) <∞ implies that A
is ergodic, and therefore

(282) lim
t→∞γ+

(
At, d

p

X

)= lim
t→∞γ+

(
At(A), d

p

X

)= 1.

Thus, we always have asymptotic decay of the Poincaré constants of At and At(A) as
t →∞, but for the iterative construction presented in this paper we need a quantitative
variant of (282). At the very least, we need (X, d

p

X) to admit the following type of uniform

decay of the Poincaré constant.
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Definition 9.2 (Spaces admitting uniform decay of Poincaré constants). — Let X be a set and

K : X × X→ [0,∞) a kernel. Say that (X,K) has the uniform decay property if for every

M ∈ (1,∞) there exists t ∈N and Γ ∈ [1,∞) such that for every n ∈N and every n× n symmetric

stochastic matrix A,

γ+(A,K)≥ Γ =⇒ γ+
(
At(A),K

)≤ γ+(A,K)

M
.

We now show that there exists a metric space (X, dX) such that (X, d2
X) does not

have the uniform decay property.

Proposition 9.3. — There exist a metric space (X, ρ) and a universal constant η ∈ (0,∞)

with the following property. For every n ∈N there is an n-vertex regular graph Gn = (Vn,En) such that

limn→∞ γ+(Gn, ρ
2)=∞, yet for every t ∈N there exists n0 ∈N such

n≥ n0 =⇒ γ+
(
At(Gn), ρ

2
)≥ η · γ+

(
Gn, ρ

2
)
.

Proof. — Define

X def= 	∞ ∩Zℵ0,

i.e., X is the set of all integer-valued bounded sequences. Consider the following metric
ρ :X×X→[0,∞).

(283) ρ(x, y)
def= log

(
1+ ‖x− y‖∞

)
.

Note that ρ is indeed a metric since the mapping T : [0,∞)→[0,∞) given by

T(s)
def= log(1+ s)

is concave, increasing and T(0)= 0.
Let Gn = (Vn,En) be an arbitrary sequence of constant degree expanders, i.e., Gn

is an n-vertex graph of degree d (say d = 4) satisfying

C def= sup
n∈N

γ+
(
Gn,‖ · ‖2

2

)
<∞.

We claim that

(284) γ+
(
Gn, ρ

2
)
�
(
log(1+ log n)

)2
.

The goal is to prove that every f , g :Gn →X satisfy

1
n2

∑

(u,v)∈Vn×Vn

ρ
(

f (u), g(v)
)2 � (log(1+ log n))2

nd

∑

(u,v)∈En

ρ
(

f (u), g(v)
)2

.
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To this end write

Sn
def= f (Vn)∪ g(Vn)⊆ Zℵ0 .

By Bourgain’s embedding theorem [10], applied to the metric space (Sn, 	∞), there exists
β : Sn → 	2 satisfying

∀u, v ∈Vn,
∥∥ f (u)− g(v)

∥∥
∞ ≤

∥∥β
(

f (u)
)− β

(
g(v)

)∥∥
2

(285)

≤ c(1+ log n)
∥∥f (u)− g(v)

∥∥
∞,

where c ∈ (1,∞) is a universal constant. For every u, v ∈Vn we have

ρ
(

f (u), g(v)
) (283)∧(285)≤ log

(
1+ ∥∥β

(
f (u)

)− β
(
g(v)

)∥∥
2

)
(286)

(285)≤ log
(
1+ c(1+ log n)

∥∥ f (u)− g(v)
∥∥
∞
)

(283)

� log(1+ log n) · ρ( f (u), g(v)
)
,

where in the last step of (286) we used the fact that if f (u) �= g(v) then ‖f (u)− g(v)‖∞ ≥ 1.
As shown in [44, Remark 5.4], there exists a universal constant κ > 1 and a map-

ping φ : 	2 → 	2 such that

(287) ∀x, y ∈ 	2, T
(‖x− y‖2

)≤ ∥∥φ(x)− φ( y)
∥∥

2
≤ κT

(‖x− y‖2

)
.

A combination of (285), (286) and (287) implies that the mapping ψ = φ ◦ β : Sn → 	2

satisfies

∀u, v ∈Vn ρ
(

f (u), g(v)
)≤ ∥∥ψ

(
f (u)

)−ψ
(
g(v)

)∥∥
2

� log(1+ log n) · ρ( f (u), g(v)
)
.

Since γ+(Gn,‖ · ‖2
2)≤C, we conclude that

1
n2

∑

(u,v)∈Vn×Vn

ρ
(

f (u), g(v)
)2

≤ 1
n2

∑

(u,v)∈Vn×Vn

∥∥ψ
(

f (u)
)−ψ

(
g(v)

)∥∥2

2

≤ C
nd

∑

(u,v)∈En

∥∥ψ
(

f (u)
)−ψ

(
g(v)

)∥∥2

2

� (log(1+ log n))2

nd

∑

(u,v)∈En

ρ
(

f (u), g(v)
)2

.
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This completes the proof of (284).
We will now bound γ+(At(Gn), ρ

2) from below. For this purpose it is sufficient
to examine a specific embedding of the graph At(Gn) into X. Let ϕ : Vn → Zℵ0 be an
isometric embedding of the shortest path metric on At(Gn) into (Zℵ0,‖ · ‖∞). If {u, v} ∈
E(At(Gn)) then ρ(ϕ(u), ϕ(v)) = T(‖ϕ(u) − ϕ(v)‖∞) = T(1) = 1. On the other hand,
since the degree of At(G) is tdt , at least half of the pairs in Vn×Vn are at distance � log n

t log d

in the shortest path metric on At(G). Hence for at least half of the pairs (u, v) ∈Vn×Vn

we have

ρ
(
ϕ(u), ϕ(v)

)≥ log
(

1+ ξ
log n

t log d

)
,

where ξ ∈ (0,∞) is a universal constant. If

n≥ e(t log d)2

then we deduce that

γ+
(
At(Gn), ρ

2
)≥

1
n2

∑
(u,v)∈Vn×Vn

ρ(ϕ(u), ϕ(v))2

1
ntdt

∑
(u,v)∈E(At(Gn))

ρ(ϕ(u), ϕ(v))2

�
(
log(1+ log n)

)2
(284)

� γ+
(
Gn, ρ

2
)
,

thus completing the proof of Proposition 9.3. �

Remark 9.4. — Using Matoušek’s Lp-variant of the Poincaré inequality for ex-
panders [41], the proof of Proposition 9.3 extends mutatis mutandis to show that (X, d

p

X)

fails to have the uniform decay property for any p ∈ (0,∞).

Remark 9.5. — We do not know if there exists a normed space which does not have
the uniform decay property, though we conjecture that such spaces do exist, and that this
even holds for 	∞. Note that despite the fact that all separable metric spaces embed into
	∞, we cannot formally deduce from Proposition 9.3 that 	∞ satisfies the same conclusion
since the uniform decay property of the Poincaré constant is not necessarily monotone
when passing to subsets of metric spaces. We suspect that (	1,‖·‖2

1) does have the uniform
decay property despite the fact that 	1 does not admit an equivalent uniformly convex
norm.
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