294 research outputs found

    Fat residue and use-wear found on Acheulian biface and scraper associated with butchered elephant remains at the site of Revadim, Israel

    Get PDF
    The archaeological record indicates that elephants must have played a significant role in early human diet and culture during Palaeolithic times in the Old World. However, the nature of interactions between early humans and elephants is still under discussion. Elephant remains are found in Palaeolithic sites, both open-air and cave sites, in Europe, Asia, the Levant, and Africa. In some cases elephant and mammoth remains indicate evidence for butchering and marrow extraction performed by humans. Revadim Quarry (Israel) is a Late Acheulian site where elephant remains were found in association with characteristic Lower Palaeolithic flint tools. In this paper we present results regarding the use of Palaeolithic tools in processing animal carcasses and rare identification of fat residue preserved on Lower Palaeolithic tools. Our results shed new light on the use of Palaeolithic stone tools and provide, for the first time, direct evidence (residue) of animal exploitation through the use of an Acheulian biface and a scraper. The association of an elephant rib bearing cut marks with these tools may reinforce the view suggesting the use of Palaeolithic stone tools in the consumption of large game

    Ultra-Slow Vacancy-Mediated Tracer Diffusion in Two Dimensions: The Einstein Relation Verified

    Full text link
    We study the dynamics of a charged tracer particle (TP) on a two-dimensional lattice all sites of which except one (a vacancy) are filled with identical neutral, hard-core particles. The particles move randomly by exchanging their positions with the vacancy, subject to the hard-core exclusion. In case when the charged TP experiences a bias due to external electric field E{\bf E}, (which favors its jumps in the preferential direction), we determine exactly the limiting probability distribution of the TP position in terms of appropriate scaling variables and the leading large-N (nn being the discrete time) behavior of the TP mean displacement Xˉn\bar{{\bf X}}_n; the latter is shown to obey an anomalous, logarithmic law Xˉn=α0(E)ln(n)|\bar{{\bf X}}_n| = \alpha_0(|{\bf E}|) \ln(n). On comparing our results with earlier predictions by Brummelhuis and Hilhorst (J. Stat. Phys. {\bf 53}, 249 (1988)) for the TP diffusivity DnD_n in the unbiased case, we infer that the Einstein relation μn=βDn\mu_n = \beta D_n between the TP diffusivity and the mobility μn=limE0(Xˉn/En)\mu_n = \lim_{|{\bf E}| \to 0}(|\bar{{\bf X}}_n|/| {\bf E} |n) holds in the leading in nn order, despite the fact that both DnD_n and μn\mu_n are not constant but vanish as nn \to \infty. We also generalize our approach to the situation with very small but finite vacancy concentration ρ\rho, in which case we find a ballistic-type law Xˉn=πα0(E)ρn|\bar{{\bf X}}_n| = \pi \alpha_0(|{\bf E}|) \rho n. We demonstrate that here, again, both DnD_n and μn\mu_n, calculated in the linear in ρ\rho approximation, do obey the Einstein relation.Comment: 25 pages, one figure, TeX, submitted to J. Stat. Phy

    Residence Time Statistics for Normal and Fractional Diffusion in a Force Field

    Full text link
    We investigate statistics of occupation times for an over-damped Brownian particle in an external force field. A backward Fokker-Planck equation introduced by Majumdar and Comtet describing the distribution of occupation times is solved. The solution gives a general relation between occupation time statistics and probability currents which are found from solutions of the corresponding problem of first passage time. This general relationship between occupation times and first passage times, is valid for normal Markovian diffusion and for non-Markovian sub-diffusion, the latter modeled using the fractional Fokker-Planck equation. For binding potential fields we find in the long time limit ergodic behavior for normal diffusion, while for the fractional framework weak ergodicity breaking is found, in agreement with previous results of Bel and Barkai on the continuous time random walk on a lattice. For non-binding potential rich physical behaviors are obtained, and classification of occupation time statistics is made possible according to whether or not the underlying random walk is recurrent and the averaged first return time to the origin is finite. Our work establishes a link between fractional calculus and ergodicity breaking.Comment: 12 page

    Gradient descent learning in and out of equilibrium

    Full text link
    Relations between the off thermal equilibrium dynamical process of on-line learning and the thermally equilibrated off-line learning are studied for potential gradient descent learning. The approach of Opper to study on-line Bayesian algorithms is extended to potential based or maximum likelihood learning. We look at the on-line learning algorithm that best approximates the off-line algorithm in the sense of least Kullback-Leibler information loss. It works by updating the weights along the gradient of an effective potential different from the parent off-line potential. The interpretation of this off equilibrium dynamics holds some similarities to the cavity approach of Griniasty. We are able to analyze networks with non-smooth transfer functions and transfer the smoothness requirement to the potential.Comment: 08 pages, submitted to the Journal of Physics

    Learning by message-passing in networks of discrete synapses

    Get PDF
    We show that a message-passing process allows to store in binary "material" synapses a number of random patterns which almost saturates the information theoretic bounds. We apply the learning algorithm to networks characterized by a wide range of different connection topologies and of size comparable with that of biological systems (e.g. n105106n\simeq10^{5}-10^{6}). The algorithm can be turned into an on-line --fault tolerant-- learning protocol of potential interest in modeling aspects of synaptic plasticity and in building neuromorphic devices.Comment: 4 pages, 3 figures; references updated and minor corrections; accepted in PR

    On-line learning of non-monotonic rules by simple perceptron

    Full text link
    We study the generalization ability of a simple perceptron which learns unlearnable rules. The rules are presented by a teacher perceptron with a non-monotonic transfer function. The student is trained in the on-line mode. The asymptotic behaviour of the generalization error is estimated under various conditions. Several learning strategies are proposed and improved to obtain the theoretical lower bound of the generalization error.Comment: LaTeX 20 pages using IOP LaTeX preprint style file, 14 figure

    Frateuria defendens reduces yellows disease symptoms in grapevine under field conditions

    Get PDF
    Yellows diseases in grapevine, associated with the presence of different phytoplasmas, are a major problem for growers, with no environmentally friendly means of control. Frateuria defendens (Frd), a bacterium with endophytic traits, has been shown to reduce yellows symptoms in grapevine plantlets under laboratory conditions. The objective of this study was to test whether similar effects could be achieved under field conditions. A trial was conducted in a heavily infected vineyard in northern Israel for two consecutive years. A suspension of Frd cells (108·mL-1) was applied bi-weekly by foliar spray on grapevines from bud burst to leaf senescence. Frd penetrated the leaves during the growing period but not during leaf senescence and could be detected in the leaves by PCR analysis up to 14 days post-spraying. The rate of yellows infection was lower in the treated grapevines compared to its increase in untreated grapevines and the yield of symptomatic plants was improved by 10 to 20 %. Taken together, the results suggest Frd acted as a biological control agent in vineyards under the experimental conditions tested

    Diffusion on random site percolation clusters. Theory and NMR microscopy experiments with model objects

    Full text link
    Quasi two-dimensional random site percolation model objects were fabricate based on computer generated templates. Samples consisting of two compartments, a reservoir of H2_2O gel attached to a percolation model object which was initially filled with D2_2O, were examined with NMR (nuclear magnetic resonance) microscopy for rendering proton spin density maps. The propagating proton/deuteron inter-diffusion profiles were recorded and evaluated with respect to anomalous diffusion parameters. The deviation of the concentration profiles from those expected for unobstructed diffusion directly reflects the anomaly of the propagator for diffusion on a percolation cluster. The fractal dimension of the random walk, dwd_w, evaluated from the diffusion measurements on the one hand and the fractal dimension, dfd_f, deduced from the spin density map of the percolation object on the other permits one to experimentally compare dynamical and static exponents. Approximate calculations of the propagator are given on the basis of the fractional diffusion equation. Furthermore, the ordinary diffusion equation was solved numerically for the corresponding initial and boundary conditions for comparison. The anomalous diffusion constant was evaluated and is compared to the Brownian case. Some ad hoc correction of the propagator is shown to pay tribute to the finiteness of the system. In this way, anomalous solutions of the fractional diffusion equation could experimentally be verified for the first time.Comment: REVTeX, 12 figures in GIF forma

    Random multi-index matching problems

    Full text link
    The multi-index matching problem (MIMP) generalizes the well known matching problem by going from pairs to d-uplets. We use the cavity method from statistical physics to analyze its properties when the costs of the d-uplets are random. At low temperatures we find for d>2 a frozen glassy phase with vanishing entropy. We also investigate some properties of small samples by enumerating the lowest cost matchings to compare with our theoretical predictions.Comment: 22 pages, 16 figure
    corecore