35 research outputs found

    Campholenic aldehyde ozonolysis: a mechanism leading to specific biogenic secondary organic aerosol constituents

    Get PDF
    In the present study, campholenic aldehyde ozonolysis was performed to investigate pathways leading to specific biogenic secondary organic aerosol (SOA) marker compounds. Campholenic aldehyde, a known α-pinene oxidation product, is suggested to be a key intermediate in the formation of terpenylic acid upon α-pinene ozonolysis. It was reacted with ozone in the presence and absence of an OH radical scavenger, leading to SOA formation with a yield of 0.75 and 0.8, respectively. The resulting oxidation products in the gas and particle phases were investigated employing a denuder/filter sampling combination. Gas-phase oxidation products bearing a carbonyl group, which were collected by the denuder, were derivatised by 2,4-dinitrophenylhydrazine (DNPH) followed by liquid chromatography/negative ion electrospray ionisation time-of-flight mass spectrometry analysis and were compared to the gas-phase compounds detected by online proton-transfer-reaction mass spectrometry. Particle-phase products were also analysed, directly or after DNPH derivatisation, to derive information about specific compounds leading to SOA formation. Among the detected compounds, the aldehydic precursor of terpenylic acid was identified and its presence was confirmed in ambient aerosol samples from the DNPH derivatisation, accurate mass data, and additional mass spectrometry (MS<sup>2</sup> and MS<sup>3</sup> fragmentation studies). Furthermore, the present investigation sheds light on a reaction pathway leading to the formation of terpenylic acid, involving α-pinene, α-pinene oxide, campholenic aldehyde, and terpenylic aldehyde. Additionally, the formation of diaterpenylic acid acetate could be connected to campholenic aldehyde oxidation. The present study also provides insights into the source of other highly functionalised oxidation products (e.g. <i>m</i> / <i>z</i> 201, C<sub>9</sub>H<sub>14</sub>O<sub>5</sub> and <i>m</i> / <i>z</i> 215, C<sub>10</sub>H<sub>16</sub>O<sub>5</sub>), which have been observed in ambient aerosol samples and smog chamber-generated monoterpene SOA. The <i>m</i> / <i>z</i> 201 and 215 compounds were tentatively identified as a C<sub>9</sub>- and C<sub>10</sub>-carbonyl-dicarboxylic acid, respectively, based on reaction mechanisms of campholenic aldehyde and ozone, as well as detailed interpretation of mass spectral data, in conjunction with the formation of corresponding DNPH derivatives

    Silicon-29 NMR data of C10H14OSi

    No full text

    Particle‐Phase Uptake and Chemistry of Highly Oxygenated Organic Molecules (HOMs) From α‐Pinene OH Oxidation

    No full text
    Secondary organic aerosol (SOA) forms a major part of the tropospheric submicron particle mass. Still, the exact formation mechanisms of SOA have remained elusive. It is now admitted that highly oxygenated organic molecules (HOMs) can contribute to a large fraction of SOA formation. In this study, we performed a set of chamber experiments to investigate the SOA formation, and the HOMs uptake and processing directly formed by OH‐radical initiated oxidation of α‐pinene under two different aerosol seed conditions. Numerous HOM compounds were identified using advanced online and offline analytical techniques, and grouped into four classes according to their different uptake behaviors. For the first time, individual HOMs uptake coefficients ranging from 1.1 × 10−2 to 1.5 × 10−1 were experimentally determined and analyzed using a resistance model which considers uptake limitations by individual gas‐ and/or particle‐phase processes. This study demonstrates that the uptake coefficients of HOMs strongly depend on their molar mass and their respective O/C ratio. Results show that aerosol seed composition and phase state affect the initial uptake of HOMs. Furthermore, the study demonstrates that the acidity and/or different seed phase‐state can significantly enhance the subsequent uptake through occurring acidity‐driven reactions reflected in a reactive behavior, particularly under (NH4)HSO4 seed conditions, promoting up to 3 times a higher SOA mass formation including the formation of highly oxidized organosulfates (HOOS). Overall, the present study implies that HOMs and their subsequent chemical processing can play an important role in both the early growth of newly formed particles and SOA formation when particle acidity is high.Plain Language Summary: Tropospheric organic aerosol (OA) compounds represent a large part of submicron particulate matter. A big fraction of OA is formed from oxidation of emitted gaseous volatile organic compounds such as α‐pinene. Oxidation products are less‐volatile compounds that tend to condense on aerosol particles. Recently identified “highly oxygenated organic molecules” (HOMs) are formed by gas‐phase autoxidation processes and exhibit very low vapor pressures. Therefore, HOMs are expected to efficiently contribute to secondary organic aerosol (SOA). However, up to now, SOA formation potential of HOMs is still not well described because of lacking experimental investigations and analysis. Consequently, this study aims to investigate the mentioned HOMs partitioning and subsequent SOA formation from the OH‐radical initiated oxidation of α‐pinene under both Na2SO4 and (NH4)HSO4 aerosol seed conditions through complex chamber experiments. For the first time, individual HOMs uptake coefficients were determined experimentally. Further investigations demonstrated that the uptake coefficients of HOMs strongly depend on their molar mass, as well as on their respective O/C ratio. Finally, the results show that aerosol acidity and/or phase state significantly enhances the HOMs uptake and promotes up to three times higher SOA mass formation under (NH4)HSO4 seed conditions compared to that under neutral seed conditions.Key Points: Uptake coefficients of numerous highly oxygenated organic molecules (HOMs) were experimentally determined for the first time. HOMs uptake and secondary organic aerosol formation were significantly enhanced by acidic (NH4)HSO4 seed. Highly oxidized organosulfates formation were observed under acidic (NH4)HSO4 seed conditions.European Commission http://dx.doi.org/10.13039/501100000780National Natural Science Foundation of China http://dx.doi.org/10.13039/501100001809https://doi.org/10.25326/FJNF-7224https://doi.org/10.25326/KC8N-DY5

    Effect of varying experimental conditions on the viscosity of <i>α</i>-pinene derived secondary organic material

    Get PDF
    Knowledge of the viscosity of particles containing secondary organic material (SOM) is useful for predicting reaction rates and diffusion in SOM particles. In this study we investigate the viscosity of SOM particles as a function of relative humidity and SOM particle mass concentration, during SOM synthesis. The SOM was generated via the ozonolysis of <i>α</i>-pinene at &lt; 5 % relative humidity (RH). Experiments were carried out using the poke-and-flow technique, which measures the experimental flow time (<i>τ</i><sub>exp, flow</sub>) of SOM after poking the material with a needle. In the first set of experiments, we show that <i>τ</i><sub>exp, flow</sub> increased by a factor of 3600 as the RH increased from &lt; 0.5 RH to 50 % RH, for SOM with a production mass concentration of 121 ”g m<sup>−3</sup>. Based on simulations, the viscosities of the particles were between 6  ×  10<sup>5</sup> and 5  ×  10<sup>7</sup> Pa s at &lt; 0.5 % RH and between 3  ×  10<sup>2</sup> and 9  ×  10<sup>3</sup> Pa s at 50 % RH. In the second set of experiments we show that under dry conditions <i>τ</i><sub>exp, flow</sub> decreased by a factor of 45 as the production mass concentration increased from 121 to 14 000 ”g m<sup>−3</sup>. From simulations of the poke-and-flow experiments, the viscosity of SOM with a production mass concentration of 14 000 ”g m<sup>−3</sup> was determined to be between 4  ×  10<sup>4</sup> and 1.5  ×  10<sup>6</sup> Pa s compared to between 6  ×  10<sup>5</sup> and 5  ×  10<sup>7</sup> Pa s for SOM with a production mass concentration of 121 ”g m<sup>−3</sup>. The results can be rationalized by a dependence of the chemical composition of SOM on production conditions. These results emphasize the shifting characteristics of SOM, not just with RH and precursor type, but also with the production conditions, and suggest that production mass concentration and the RH at which the viscosity was determined should be considered both when comparing laboratory results and when extrapolating these results to the atmosphere

    High spin polarization at the HERA electron storage ring

    No full text
    This paper describes the progress made in 1992 towards increasing the vertical electron beam polarization at HERA. Utilizing harmonic spin-orbit corrections and beam tuning, the vertical polarization has been increased from 15% to nearly 60% at a beam energy of 26.7 GeV. The long-term reproducibility of the polarization is excellent. Measurements of the build-up time and the energy dependence of the polarization are also described

    High spin polarization at the HERA electron storage ring

    No full text
    This paper describes the progress made in 1992 towards increasing the vertical electron beam polarization at HERA. Utilizing harmonic spin-orbit corrections and beam tuning, the vertical polarization has been increased from 15% to nearly 60% at a beam energy of 26.7 GeV. The long-term reproducibility of the polarization is excellent. Measurements of the build-up time and the energy dependence of the polarization are also described
    corecore