7,521 research outputs found
Theoretical study of electronic damage in single particle imaging experiments at XFELs for pulse durations 0.1 - 10 fs
X-ray free-electron lasers (XFELs) may allow to employ the single particle
imaging (SPI) method to determine the structure of macromolecules that do not
form stable crystals. Ultrashort pulses of 10 fs and less allow to outrun
complete disintegration by Coulomb explosion and minimize radiation damage due
to nuclear motion, but electronic damage is still present. The major
contribution to the electronic damage comes from the plasma generated in the
sample that is strongly dependent on the amount of Auger ionization. Since the
Auger process has a characteristic time scale on the order of femtoseconds, one
may expect that its contribution will be significantly reduced for attosecond
pulses. Here, we study the effect of electronic damage on the SPI at pulse
durations from 0.1 fs to 10 fs and in a large range of XFEL fluences to
determine optimal conditions for imaging of biological samples. We analyzed the
contribution of different electronic excitation processes and found that at
fluences higher than - photons/m (depending on the
photon energy and pulse duration) the diffracted signal saturates and does not
increase further. A significant gain in the signal is obtained by reducing the
pulse duration from 10 fs to 1 fs. Pulses below 1 fs duration do not give a
significant gain in the scattering signal in comparison with 1 fs pulses. We
also study the limits imposed on SPI by Compton scattering.Comment: 35 pages, 9 figures, 1 table, 2 appendixes, 45 reference
On the Cholesky Decomposition for electron propagator methods: General aspects and application on C60
To treat the electronic structure of large molecules by electron propagator
methods we developed a parallel computer program called P-RICD. The
program exploits the sparsity of the two-electron integral matrix by using
Cholesky decomposition techniques. The advantage of these techniques is that
the error introduced is controlled only by one parameter which can be chosen as
small as needed. We verify the tolerance of electron propagator methods to the
Cholesky decomposition threshold and demonstrate the power of the
P-RICD program for a representative example (C60). All decomposition
schemes addressed in the literature are investigated. Even with moderate
thresholds the maximal error encountered in the calculated electron affinities
and ionization potentials amount to a few meV only, and the error becomes
negligible for small thresholds.Comment: 30 pages, 6 figures submitted to J.Chem. Phy
Magnetostrictive Neel ordering of the spin-5/2 ladder compound BaMn2O3: distortion-induced lifting of geometrical frustration
The crystal structure and the magnetism of BaMnO have been studied by
thermodynamic and by diffraction techniques using large single crystals and
powders. BaMnO is a realization of a spin ladder as the
magnetic interaction is dominant along 180 Mn-O-Mn bonds forming the
legs and the rungs of a ladder. The temperature dependence of the magnetic
susceptibility exhibits well-defined maxima for all directions proving the
low-dimensional magnetic character in BaMnO. The susceptibility and
powder neutron diffraction data, however, show that BaMnO exhibits a
transition to antiferromagnetic order at 184 K, in spite of a full frustration
of the nearest-neighbor inter-ladder coupling in the orthorhombic
high-temperature phase. This frustration is lifted by a remarkably strong
monoclinic distortion which accompanies the magnetic transition.Comment: 9 pages, 8 figures, 2 tables; in V1 fig. 2 was included twice and
fig. 4 was missing; this has been corrected in V
Role of center vortices in chiral symmetry breaking in SU(3) gauge theory
We study the behavior of the AsqTad quark propagator in Landau gauge on SU(3)
Yang-Mills gauge configurations under the removal of center vortices. In SU(2)
gauge theory, center vortices have been observed to generate chiral symmetry
breaking and dominate the infrared behavior of the quark propagator. In
contrast, we report a weak dependence on the vortex content of the gauge
configurations, including the survival of dynamical mass generation on
configurations with vanishing string tension.Comment: 8 pages, 9 figure
Reduction of Guided Acoustic Wave Brillouin Scattering in Photonic Crystal Fibers
Guided Acoustic Wave Brillouin Scattering (GAWBS) generates phase and
polarization noise of light propagating in glass fibers. This excess noise
affects the performance of various experiments operating at the quantum noise
limit. We experimentally demonstrate the reduction of GAWBS noise in a photonic
crystal fiber in a broad frequency range using cavity sound dynamics. We
compare the noise spectrum to the one of a standard fiber and observe a 10-fold
noise reduction in the frequency range up to 200 MHz. Based on our measurement
results as well as on numerical simulations we establish a model for the
reduction of GAWBS noise in photonic crystal fibers.Comment: 4 pages, 7 figures; added numerical simulations, added reference
Low-temperature ordered phases of the spin- XXZ chain system CsCoCl
In this study the magnetic order of the spin-1/2 XXZ chain system
CsCoCl in a temperature range from 50 mK to 0.5 K and in applied
magnetic fields up to 3.5 T is investigated by high-resolution measurements of
the thermal expansion and the specific heat. Applying magnetic fields along a
or c suppresses completely at about 2.1 T. In addition, we find
an adjacent intermediate phase before the magnetization saturates close to 2.5
T. For magnetic fields applied along b, a surprisingly rich phase diagram
arises. Two additional transitions are observed at critical fields T and T, which we propose to
arise from a two-stage spin-flop transition.Comment: 10 pages, 10 figure
A tool to analyze robust stability for constrained nonlinear MPC
A sufficient condition for robust asymptotic stability of nonlinear constrained model predictive control (MPC) is derived with respect to plant/model mismatch. This work is an extension of a previous study on the unconstrained nonlinear MPC problem, and is based on nonlinear programming sensitivity concepts. It addresses the discrete time state feedback problem with all states measured. A strategy to estimate bounds on the plant/model mismatch is proposed that can be used off-line as a tool to assess the extent of model mismatch that can be tolerated to guarantee robust stability.http://www.sciencedirect.com/science/article/B6V4N-4R7F42T-2/1/7729956156701c2970c6a488f929884
Intensity interferometry of single x-ray pulses from a synchrotron storage ring
We report on measurements of second-order intensity correlations at the high
brilliance storage ring PETRA III using a prototype of the newly developed
Adaptive Gain Integrating Pixel Detector (AGIPD). The detector recorded
individual synchrotron radiation pulses with an x-ray photon energy of 14.4 keV
and repetition rate of about 5 MHz. The second-order intensity correlation
function was measured simultaneously at different spatial separations that
allowed to determine the transverse coherence length at these x-ray energies.
The measured values are in a good agreement with theoretical simulations based
on the Gaussian Schell-model.Comment: 16 pages, 6 figures, 42 reference
Phase diagram and isotope effect in (PrEu)_0.7Ca_0.3CoO_3 cobaltites exhibiting spin-state transitions
We present the study of magnetization, thermal expansion, specific heat,
resistivity, and a.c. susceptibility of
(PrEu)CaCoO cobaltites. The measurements were
performed on ceramic samples with and . Based on these
results, we construct the phase diagram, including magnetic and spin-state
transitions. The transition from the low- to intermediate-spin state is
observed for the samples with , whereas for a lower Eu-doping level,
there are no spin-state transitions, but a crossover between the ferromagnetic
and paramagnetic states occurs. The effect of oxygen isotope substitution along
with Eu doping on the magnetic/spin state is discussed. The oxygen-isotope
substitution (O by O) is found to shift both the magnetic and
spin-state phase boundaries to lower Eu concentrations. The isotope effect on
the spin-state transition temperature () is rather strong, but it is
much weaker for the transition to a ferromagnetic state (). The
ferromagnetic ordering in the low-Eu doped samples is shown to be promoted by
the Co ions, which favor the formation of the intermediate-spin state of
neighboring Co ions.Comment: 13 pages, including 11 figures, to be published in Phys. Rev.
- …