41 research outputs found

    Assessing hyporheic zone dynamics in two alluvial flood plains of the Southern Alps using water temperature and tracers

    No full text
    International audienceWater temperature can be used as a tracer for the interaction between river water and groundwater, interpreting time shifts in temperature signals as retarded travel times. The water temperature fluctuates on different time scales, the most pronounced of which are the seasonal and diurnal ones. While seasonal fluctuations can be found in any type of shallow groundwater, high-frequency components are more typical for freshly infiltrated river water, or hyporheic groundwater, and are thus better suited for evaluating the travel time of the youngest groundwater component in alluvial aquifer systems. We present temperature time series collected at two sites in the alpine floodplain aquifers of the river Brenno in Southern Switzerland. At the first site, we determine apparent travel times of temperature for both the seasonal and high-frequency components of the temperature signals in several wells. The seasonal signal appears to travel more slowly, indicating a mixture of older and younger groundwater components, which is confirmed by sulphate measurements. The travel times of the high-frequency component qualitatively agree with the groundwater age derived from radon concentrations, which exclusively reflects young water components. Directly after minor floods, the amplitude of temperature fluctuations in an observation well nearby the river is the highest. Within a week, the riverbed is being clogged, leading to stronger attenuation of the temperature fluctuations in the observation well. At the second site, very fast infiltration to depths of 1.9m under the riverbed could be inferred from the time shift of the diurnal temperature signal

    Assessing residence times of hyporheic ground water in two alluvial flood plains of the Southern Alps using water temperature and tracers

    No full text
    International audienceWater temperature can be used as a tracer for the interaction between river water and groundwater, interpreting time shifts in temperature signals as retarded travel times. The water temperature fluctuates on different time scales, the most pronounced of which are the seasonal and diurnal ones. While seasonal fluctuations can be found in any type of shallow groundwater, high-frequency components are more typical for freshly infiltrated river water, or hyporheic groundwater, and are thus better suited for evaluating the travel time of the youngest groundwater component in alluvial aquifer systems. We present temperature time series collected at two sites in the alpine floodplain aquifers of the Brenno river in Southern Switzerland. At the first site, we determine apparent travel times of temperature for both the seasonal and high-frequency components of the temperature signals in several wells. The seasonal signal appears to travel more slowly, indicating a mixture of older and younger groundwater components, which is confirmed by sulphate measurements. The travel times of the high-frequency component qualitatively agree with the groundwater age derived from radon concentrations, which exclusively reflects young water components. Directly after minor floods, the amplitude of temperature fluctuations in an observation well nearby the river is the highest. Within a week, the riverbed is being clogged, leading to stronger attenuation of the temperature fluctuations in the observation well. At the second site, very fast infiltration to depths of 1.9 m under the riverbed could be inferred from the time shift of the diurnal temperature signal

    Untersuchung der Flusswasserinfiltration in voralpinen Schottern mittels Zeitreihenanalyse

    Get PDF
    Kurzfassung: Grundwasserfassungen in der Nähe von Flüssen können durch die Infiltration von Flusswasser beeinflusst werden. Aus Sicht des Trinkwasserschutzes interessiert vor allem, welcher Anteil des geförderten Wassers aus dem Fluss stammt und wie lange das Flussinfiltrat im Grundwasserleiter verbleibt, bevor es gefördert wird. Hierzu können Markierversuche durchgeführt werden, die jedoch bei größeren Flüssen mit einem erheblichen Stoffeintrag verbunden sind. Als Alternative zu Markierversuchen stellen wir Methoden vor, um aus Zeitreihen der elektrischen Leitfähigkeit und der Temperatur quantitative Aussagen zu Mischungsverhältnissen und Aufenthaltszeiten abzuleiten. Wir empfehlen ein mehrstufiges Vorgehen bestehend aus: (1) einer qualitativen Analyse, (2) der spektralen Ermittlung des saisonalen Temperatur- und Leitfähigkeitsverlaufs, (3) einer Kreuzkorrelationsanalyse und (4) der nicht-parametrischen Dekonvolution der Zeitreihen. Wir wenden diese Methoden an drei Standorten im Grundwasserstrom des Thurtales im schweizerischen Mittelland an. An Standorten ohne gute Flussanbindung oder mit exfiltrierenden Verhältnissen können die aufwändigen Zeitreihenanalysen nicht angewendet werden, die Messreihen zeigen jedoch die entsprechenden Verhältnisse an. An Standorten mit dauerhafter Flussinfiltration kann aus den Zeitreihen die Durchbruchskurve eines Markierversuches rekonstruiert werden, ohne einen künstlichen Markierstoff in den Fluss geben zu müsse

    Contributions of catchment and in-stream processes to suspended sediment transport in a dominantly groundwater-fed catchment

    Get PDF
    Suspended sediments impact stream water quality by increasing the turbidity and acting as a vector for strongly sorbing pollutants. Understanding their sources is of great importance to developing appropriate river management strategies. In this study, we present an integrated sediment transport model composed of a catchment-scale hydrological model to predict river discharge, a river-hydraulics model to obtain shear stresses in the channel, a sediment-generating model, and a river sediment-transport model. We use this framework to investigate the sediment contributions from catchment and in-stream processes in the Ammer catchment close to Tübingen in southwestern Germany. The model is calibrated to stream flow and suspended-sediment concentrations. We use the monthly mean suspended-sediment load to analyze seasonal variations of different processes. The contributions of catchment and in-stream processes to the total loads are demonstrated by model simulations under different flow conditions. The evaluation of shear stresses by the river-hydraulics model allows the identification of hotspots and hot moments of bed erosion for the main stem of the Ammer River. The results suggest that the contributions of suspended-sediment loads from urban areas and in-stream processes are higher in the summer months, while deposition has small variations with a slight increase in summer months. The sediment input from agricultural land and urban areas as well as bed and bank erosion increase with an increase in flow rates. Bed and bank erosion are negligible when flow is smaller than the corresponding thresholds of 1.5 and 2.5 times the mean discharge, respectively. The bed-erosion rate is higher during the summer months and varies along the main stem. Over the simulated time period, net sediment trapping is observed in the Ammer River. The present work is the basis to study particle-facilitated transport of pollutants in the system, helping to understand the fate and transport of sediments and sediment-bound pollutants.</p

    Investigating riparian groundwater flow close to a losing river using diurnal temperature oscillations at high vertical resolution

    No full text
    River-water infiltration is of high relevance for hyporheic and riparian groundwater ecology as well as for drinking water supply by river-bank filtration. Heat has become a popular natural tracer to estimate exchange rates between rivers and groundwater. However, quantifying flow patterns and velocities is impeded by spatial and temporal variations of exchange fluxes, insufficient sensors spacing during field investigations, or simplifying assumptions for analysis or modeling such as uniform flow. The objective of this study is to investigate lateral shallow groundwater flow upon river-water infiltration at the shoreline of the riverbed and in the adjacent riparian zone of the River Thur in northeast Switzerland. Here we have applied distributed temperature sensing (DTS) along optical fibers wrapped around tubes to measure high-resolution vertical temperature profiles of the unsaturated zone and shallow riparian groundwater. Diurnal temperature oscillations were tracked in the subsurface and analyzed by means of dynamic harmonic regression to extract amplitudes and phase angles. Subsequent calculations of amplitude attenuation and time shift relative to the river signal show in detail vertical and temporal variations of heat transport in shallow riparian groundwater. In addition, we apply a numerical two-dimensional heat transport model for the unsaturated zone and shallow groundwater to obtain a better understanding of the observed heat transport processes in shallow riparian groundwater and to estimate the groundwater flow velocity. Our results show that the observed riparian groundwater temperature distribution cannot be described by uniform flow, but rather by horizontal groundwater flow velocities varying over depth. In addition, heat transfer of diurnal temperature oscillations from the losing river through shallow groundwater is influenced by thermal exchange with the unsaturated zone. Neglecting the influence of the unsaturated zone would cause biased interpretation and underestimation of groundwater flow velocities. The combination of high resolution field data and modeling shows the complex hydraulic and thermal processes occurring in shallow riparian groundwater close to losing river sections as well as potential errors sources for interpreting diurnal temperature oscillations in such environments

    Three-dimensional geostatistical inversion of flowmeter and pumping test data

    No full text
    We jointly invert field data of flowmeter and multiple pumping tests in fully screened wells to estimate hydraulic conductivity using a geostatistical method. We use the steady-state drawdowns of pumping tests and the discharge profiles of flowmeter tests as our data in the inference. The discharge profiles need not be converted to absolute hydraulic conductivities. Consequently, we do not need measurements of depth-averaged hydraulic conductivity at well locations. The flowmeter profiles contain information about relative vertical distributions of hydraulic conductivity, while drawdown measurements of pumping tests provide information about horizontal fluctuation of the depth-averaged hydraulic conductivity. We apply the method to data obtained at the Krauthausen test site of the Forschungszentrum Jülich, Germany. The resulting estimate of our joint three-dimensional (3D) geostatistical inversion shows an improved 3D structure in comparison to the inversion of pumping test data only

    Towards improved instrumentation for assessing river-groundwater interactions in a restored river corridor

    Get PDF
    River restoration projects have been launched over the last two decades to improve the ecological status and water quality of regulated rivers. As most restored rivers are not monitored at all, it is difficult to predict consequences of restoration projects or analyze why restorations fail or are successful. It is thus necessary to implement efficient field assessment strategies, for example by employing sensor networks that continuously measure physical parameters at high spatial and temporal resolution. This paper focuses on the design and implementation of an instrumentation strategy for monitoring changes in bank filtration, hydrological connectivity, groundwater travel time and quality due to river restoration. We specifically designed and instrumented a network of monitoring wells at the Thur River (NE Switzerland), which is partly restored and has been mainly channelized for more than 100 years. Our results show that bank filtration – especially in a restored section with alternating riverbed morphology – is variable in time and space. Consequently, our monitoring network has been adapted in response to that variability. Although not available at our test site, we consider long-term measurements – ideally initiated before and continued after restoration – as a fundamental step towards predicting consequences of river restoration for groundwater quality. As a result, process-based models could be adapted and evaluated using these types of high-resolution data sets

    Spectral Induced Polarization (SIP) of Denitrification‐Driven Microbial Activity in Column Experiments Packed With Calcareous Aquifer Sediments

    No full text
    Spectral Induced Polarization (SIP) has been suggested as a non-invasive monitoring proxy for microbial processes. Under natural conditions, however, multiple and often coupled polarization processes co-occur, impeding the interpretation of SIP signals. In this study, we analyze the sensitivity of SIP to microbially-driven reactions under quasi-natural conditions. We conducted flow-through experiments in columns equipped with SIP electrodes and filled with natural calcareous, organic-carbon-rich aquifer sediment, in which heterotrophic denitrification was bio-stimulated. Our results show that, even in the presence of parallel polarization processes in a natural sediment under field-relevant geochemical conditions, SIP is sufficiently sensitive to microbially-driven changes in electrical charge storage. Denitrification yielded an increase in imaginary conductivity of up to 3.1 urn:x-wiley:21698953:media:jgrg22384:jgrg22384-math-0001 (+140%) and the formation of a distinct peak between 1 and 10 Hz, that matched the timing of expected microbial activity predicted by a reactive transport model fitted to solute concentrations. A Cole-Cole decomposition allowed separating the polarization contribution of microbial activity from that of cation exchange, thereby helping to locate microbial hotspots without the need for (bio)geochemical data to constrain the Cole-Cole parameters. Our approach opens new avenues for the application of SIP as a rapid method to monitor a system's reactivity in situ. While in preceding studies the SIP signals of microbial activity in natural sediments were influenced by mineral precipitation/dissolution reactions, the imaginary conductivity changes measured in the biostimulation experiments presented here were dominated by changes in the polarization of the bacterial cells rather than a reaction-induced alteration of the abiotic matrix
    corecore