59 research outputs found

    Matrix Metalloproteinase-1 and -9 in Human Placenta during Spontaneous Vaginal Delivery and Caesarean Sectioning in Preterm Pregnancy

    Get PDF
    Preterm birth is a major public health problem in terms of loss of life, long-term and short term disabilities worldwide. The process of parturition (both term and preterm) involves intensive remodelling of the extracellular matrix (ECM) in the placenta and fetal membranes by matrix metalloproteinases (MMPs). Our previous studies show reduced docosahexaenoic acid (DHA) in women delivering preterm. Further omega 3 fatty acids are reported to regulate MMP levels. This study was undertaken to examine the placental levels of MMPs and their association with placental DHA levels in women delivering preterm. The levels of MMP-1 and MMP-9 in 74 women delivering preterm (52 by spontaneous vaginal delivery and 22 by caesarean sectioning) and 75 women delivering at term (59 by spontaneous vaginal delivery and 16 by caesarean sectioning) were determined by enzyme-linked immunosorbent assay (ELISA) and their association with placental DHA was studied. Placental MMP-1 levels were higher (p<0.05) in women delivering preterm (both by spontaneous vaginal delivery and caesarean sectioning) as compared to those delivering at term. In contrast, placental MMP-9 levels in preterm pregnancies was higher (p<0.05) in women with spontaneous vaginal delivery while lower (p<0.05) in women delivering by caesarean sectioning. Low placental DHA was associated with higher placental MMP-9 levels. Our study suggests a differential effect of mode of delivery on the levels of MMPs from placenta. Further this study suggests a negative association of DHA and the levels of MMP-9 in human placenta although the mechanisms need further study

    Quantitative differential proteomics of yeast extracellular matrix: there is more to it than meets the eye

    Get PDF
    Background: Saccharomyces cerevisiae multicellular communities are sustained by a scaffolding extracellular matrix, which provides spatial organization, and nutrient and water availability, and ensures group survival. According to this tissue-like biology, the yeast extracellular matrix (yECM) is analogous to the higher Eukaryotes counterpart for its polysaccharide and proteinaceous nature. Few works focused on yeast biofilms, identifying the flocculin Flo11 and several members of the HSP70 in the extracellular space. Molecular composition of the yECM, is therefore mostly unknown. The homologue of yeast Gup1 protein in high Eukaryotes (HHATL) acts as a regulator of Hedgehog signal secretion, therefore interfering in morphogenesis and cell-cell communication through the ECM, which mediates but is also regulated by this signalling pathway. In yeast, the deletion of GUP1 was associated with a vast number of diverse phenotypes including the cellular differentiation that accompanies biofilm formation. Methods: S. cerevisiae W303-1A wt strain and gup1Δ mutant were used as previously described to generate biofilmlike mats in YPDa from which the yECM proteome was extracted. The proteome from extracellular medium from batch liquid growing cultures was used as control for yECM-only secreted proteins. Proteins were separated by SDS-PAGE and 2DE. Identification was performed by HPLC, LC-MS/MS and MALDI-TOF/TOF. The protein expression comparison between the two strains was done by DIGE, and analysed by DeCyder Extended Data Analysis that included Principal Component Analysis and Hierarchical Cluster Analysis. Results: The proteome of S. cerevisiae yECM from biofilm-like mats was purified and analysed by Nano LC-MS/MS, 2D Difference Gel Electrophoresis (DIGE), and MALDI-TOF/TOF. Two strains were compared, wild type and the mutant defective in GUP1. As controls for the identification of the yECM-only proteins, the proteome from liquid batch cultures was also identified. Proteins were grouped into distinct functional classes, mostly Metabolism, Protein Fate/Remodelling and Cell Rescue and Defence mechanisms, standing out the presence of heat shock chaperones, metalloproteinases, broad signalling cross-talkers and other putative signalling proteins. The data has been deposited to the ProteomeXchange with identifier PXD001133.Conclusions: yECM, as the mammalian counterpart, emerges as highly proteinaceous. As in higher Eukaryotes ECM, numerous proteins that could allow dynamic remodelling, and signalling events to occur in/and via yECM were identified. Importantly, large sets of enzymes encompassing full antagonistic metabolic pathways, suggest that mats develop into two metabolically distinct populations, suggesting that either extensive moonlighting or actual metabolism occurs extracellularly. The gup1Δ showed abnormally loose ECM texture. Accordingly, the correspondent differences in proteome unveiled acetic and citric acid producing enzymes as putative players in structural integrity maintenance.This work was funded by the Marie Curie Initial Training Network GLYCOPHARM (PITN-GA-2012-317297), and by national funds from FCT I.P. through the strategic funding UID/BIA/04050/2013. FĂĄbio Faria-Oliveira was supported by a PhD scholarship (SFRH/BD/45368/2008) from FCT (Fundação para a CiĂȘncia e a Tecnologia). We thank David Caceres and Montserrat MartinezGomariz from the Unidad de ProteĂłmica, Universidad Complutense de Madrid – Parque CientĂ­fico de Madrid, Spain for excellent technical assistance in the successful implementation of all proteomics procedures including peptide identification, and Joana Tulha from the CBMA, Universidade do Minho, Portugal, for helping with the SDS-PAGE experiments, and the tedious and laborious ECM extraction procedures. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium, via the PRIDE partner repository, with the dataset identifier PXD001133. We would like to thank the PRIDE team for all the help and support during the submission process.info:eu-repo/semantics/publishedVersio

    Are early somatic embryos of the norway spruce (Picea abies (L.) Karst.) organised?

    Get PDF
    Background Somatic embryogenesis in conifer species has great potential for the forestry industry. Hence, a number of methods have been developed for their efficient and rapid propagation through somatic embryogenesis. Although information is available regarding the previous process-mediated generation of embryogenic cells to form somatic embryos, there is a dearth of information in the literature on the detailed structure of these clusters. Methodology/Principal Findings The main aim of this study was to provide a more detailed structure of the embryogenic tissue clusters obtained through the in vitro propagation of the Norway spruce (Picea abies (L.) Karst.). We primarily focused on the growth of early somatic embryos (ESEs). The data on ESE growth suggested that there may be clear distinctions between their inner and outer regions. Therefore, we selected ESEs collected on the 56th day after sub-cultivation to dissect the homogeneity of the ESE clusters. Two colourimetric assays (acetocarmine and fluorescein diacetate/propidium iodide staining) and one metabolic assay based on the use of 2,3,5-triphenyltetrazolium chloride uncovered large differences in the metabolic activity inside the cluster. Next, we performed nuclear magnetic resonance measurements. The ESE cluster seemed to be compactly aggregated during the first four weeks of cultivation; thereafter, the difference between the 1H nuclei concentration in the inner and outer clusters was more evident. There were clear differences in the visual appearance of embryos from the outer and inner regions. Finally, a cluster was divided into six parts (three each from the inner and the outer regions of the embryo) to determine their growth and viability. The innermost embryos (centripetally towards the cluster centre) could grow after sub-cultivation but exhibited the slowest rate and required the longest time to reach the common growth rate. To confirm our hypothesis on the organisation of the ESE cluster, we investigated the effect of cluster orientation on the cultivation medium and the influence of the change of the cluster’s three-dimensional orientation on its development. Maintaining the same position when transferring ESEs into new cultivation medium seemed to be necessary because changes in the orientation significantly affected ESE growth. Conclusions and Significance This work illustrated the possible inner organisation of ESEs. The outer layer of ESEs is formed by individual somatic embryos with high metabolic activity (and with high demands for nutrients, oxygen and water), while an embryonal group is directed outside of the ESE cluster. Somatic embryos with depressed metabolic activity were localised in the inner regions, where these embryonic tissues probably have a very important transport function

    Oxidative Stress in Neurodegenerative Diseases

    Get PDF

    The arbuscular mycorrhizal fungus Rhizophagus irregularis differentially regulates the copper response of two maize cultivars differing in copper tolerance

    No full text
    Arbuscular mycorrhiza can increase plant tolerance to heavy metals. The effects of arbuscular mycorrhiza on plant metal tolerance vary depending on the fungal and plant species involved. Here, we report the effect of the arbuscular mycorrhizal fungus Rhizophagus irregularis on the physiological and biochemical responses to Cu of two maize genotypes differing in Cu tolerance, the Cu-sensitive cv. Orense and the Cu-tolerant cv. Oropesa. Development of the symbiosis confers an increased Cu tolerance to cv. Orense. Root and shoot Cu concentrations were lower in mycorrhizal than in non-mycorrhizal plants of both cultivars. Shoot lipid peroxidation increased with soil Cu content only in non-mycorrhizal plants of the Cu-sensitive cultivar. Root lipid peroxidation increased with soil Cu content, except in mycorrhizal plants grown at 250 mg Cu kgsoil. In shoots of mycorrhizal plants of both cultivars, superoxide dismutase, ascorbate peroxidase, catalase and glutathione reductase activities were not affected by soil Cu content. In Cu-supplemented soils, total phytochelatin content increased in shoots of mycorrhizal cv. Orense but decreased in cv. Oropesa. Overall, these data suggest that the increased Cu tolerance of mycorrhizal plants of cv. Orense could be due to an increased induction of shoot phytochelatin biosynthesis by the symbiosis in this cultivar.Peer Reviewe

    An integrated mass spectrometry and molecular dynamics simulations approach reveals the spatial organization impact of metal-binding sites on the stability of metal-depleted metallothionein‑2 species

    No full text
    16 p.-5 fig.-3 tab.-1 graph. abst.Mammalian metallothioneins (MTs) are a group of cysteine-rich proteins that bind metal ions in two α- and ÎČ-domains and represent a major cellular Zn(II)/Cu(I) buffering system in the cell. At cellular free Zn(II) concentrations (10–11–10–9 M), MTs do not exist in fully loaded forms with seven Zn(II)-bound ions (Zn7MTs). Instead, MTs exist as partially metal-depleted species (Zn4–6MT) because their Zn(II) binding affinities are on the nano- to picomolar range comparable to the concentrations of cellular Zn(II). The mode of action of MTs remains poorly understood, and thus, the aim of this study is to characterize the mechanism of Zn(II) (un)binding to MTs, the thermodynamic properties of the Zn1–6MT2 species, and their mechanostability properties. To this end, native mass spectrometry (MS) and label-free quantitative bottom-up and top-down MS in combination with steered molecular dynamics simulations, well-tempered metadynamics (WT-MetaD), and parallel-bias WT-MetaD (amounting to 3.5 ÎŒs) were integrated to unravel the chemical coordination of Zn(II) in all Zn1–6MT2 species and to explain the differences in binding affinities of Zn(II) ions to MTs. Differences are found to be the result of the degree of water participation in MT (un)folding and the hyper-reactive character of Cys21 and Cys29 residues. The thermodynamics properties of Zn(II) (un)binding to MT2 are found to differ from those of Cd(II), justifying their distinctive roles. The potential of this integrated strategy in the investigation of numerous unexplored metalloproteins is attested by the results highlighted in the present study.This research was supported by the National Science Centre of Poland (NCN) under the Opus grant no. 2018/31/B/NZ1/00567 (to A.K.), Preludium no. 2018/31/N/ST4/01909 (to. M.D.P.D), CEITEC 2020 project (LQ1601), and the European Research Council (ERC), under the European Union’s Horizon 2020 research and innovation program (grant agreement no. 759585 to V.A.).Peer reviewe

    Novel vancomycin&ndash;peptide conjugate as potent antibacterial agent against vancomycin-resistant Staphylococcus aureus

    No full text
    Pavlina Jelinkova,1 Zbynek Splichal,1,2 Ana Maria Jimenez Jimenez,1,2 Yazan Haddad,1,2 Aninda Mazumdar,1,2 Vishma Pratap Sur,1,2 Vedran Milosavljevic,1,2 Pavel Kopel,1,2 Hana Buchtelova,1 Roman Guran,1,2 Ondrej Zitka,1,2 Lukas Richtera,1,2 Dagmar Hegerova,1,2 Zbynek Heger,1,2 Amitava Moulick,1,2 Vojtech Adam1,2 1Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska, Brno, Czech Republic; 2Central European Institute of Technology, Brno University of Technology, Purkynova, Brno, Czech Republic Background: Increase in vancomycin (Van)-resistant bacterial strains including vancomycin-resistant Staphylococcus aureus (VRSA) and lack of new effective antibiotics have become a formidable health problem. Materials and methods: We designed a new conjugate composed of Van and a peptide Hecate (Hec; Van/Hec), and its potential antimicrobial activity was evaluated. Results: Results from disk diffusion test, time-kill assay, determination of minimum inhibitory concentration (MIC), microscopy, and comet assay showed strong antimicrobial effects of Van/Hec against wild-type, methicillin-resistant Staphylococcus aureus (MRSA) and VRSA. Microscopy revealed that the exposure to Van/Hec results in disruption of bacterial cell integrity in all tested strains, which was not observed in case of Van or Hec alone. Conclusion: Overall, we showed that the preparation of conjugates from antibiotics and biologically active peptides could help us to overcome the limitation of the use of antibiotic in the treatment of infections caused by multidrug-resistant bacteria. Keywords: vancomycin, antibacterial, Staphylococcus aureus, antibiotic resistance, peptid
    • 

    corecore