50 research outputs found

    Cerebrovascular Disease and Perioperative Neurologic Vulnerability: A Prospective Cohort Study

    Get PDF
    Background: Stroke is a devastating perioperative complication without effective methods for prevention or diagnosis. The objective of this study was to analyze evidence-based strategies for detecting cerebrovascular vulnerability and injury in a high-risk cohort of non-cardiac surgery patients.Methods: This was a single-center, prospective cohort study. Fifty patients undergoing non-cardiac surgery were recruited −25 with known cerebrovascular disease and 25 matched controls. Neurologic vulnerability was measured with intraoperative cerebral oximetry as the primary outcome. Perioperative neurocognitive testing and serum biomarker analysis (S-100ÎČ, neuron specific enolase, glial fibrillary acid protein, and matrix metalloproteinase-9) were measured as secondary outcomes.Results: Cerebral desaturation events (an oximetry decrease ≄20% from baseline or <50% absolute value for ≄3 min) occurred in 7/24 (29%) cerebrovascular disease patients and 2/24 (8.3%) controls (relative risk 3.5, 95% CI 0.81–15.2; P = 0.094). Cognitive function trends were similar in both groups, though overall scores (range: 1,500–7,197) were ~1 standard deviation lower in cerebrovascular patients across the entire perioperative period (−1,049 [95% CI −1,662, −436], P < 0.001). No significant serum biomarker differences were found between groups over time. One control patient experienced intraoperative hypoxic-ischemic injury, but no robust biomarker or oximetry changes were observed.Conclusions: Cerebrovascular disease patients did not demonstrate dramatic differences in cerebral oximetry, cognitive trajectory, or molecular biomarkers compared to controls. Moreover, a catastrophic hypoxic-ischemic event was neither predicted nor detected by any strategy tested. These findings support the need for novel research into cerebrovascular risk and vulnerability

    TonEBP/NFAT5 promotes obesity and insulin resistance by epigenetic suppression of white adipose tissue beiging

    Get PDF
    Tonicity-responsive enhancer binding protein (TonEBP or NFAT5) is a regulator of cellular adaptation to hypertonicity, macrophage activation and T-cell development. Here we report that TonEBP is an epigenetic regulator of thermogenesis and obesity. In mouse subcutaneous adipocytes, TonEBP expression increases > 50-fold in response to high-fat diet (HFD) feeding. Mice with TonEBP haplo-deficiency or adipocyte-specific TonEBP deficiency are resistant to HFD-induced obesity and metabolic defects (hyperglycemia, hyperlipidemia, and hyperinsulinemia). They also display increased oxygen consumption, resistance to hypothermia, and beiging of subcutaneous fat tissues. TonEBP suppresses the promoter of beta 3-adrenoreceptor gene, a critical regulator of lipolysis and thermogenesis, in ex vivo and cultured adipocytes. This involves recruitment of DNMT1 DNA methylase and methylation of the promoter. In human subcutaneous adipocytes TonEBP expression displays a correlation with body mass index but an inverse correlation with beta 3-adrenoreceptor expression. Thus, TonEBP is an attractive therapeutic target for obesity, insulin resistance, and hyperlipidemia

    A systematic review of non-hormonal treatments of vasomotor symptoms in climacteric and cancer patients

    Get PDF

    Phytoestrogen-containing diets offer benefits for mouse embryology but lead to fewer offspring being produced.

    No full text
    One of the most commonly used protein sources in rodent diets is soy, which is naturally rich in phytoestrogens. Although phytoestrogens have shown potential health benefits in humans, they may also have the ability to disrupt reproduction. Consequently, there has been a tendency to try to exclude them from rodent diets. In the current study, we investigated whether phytoestrogen content in the mouse diet could affect reproduction in mice used as embryo donors. Donor mice (C57BL/6JOlaHsd) were maintained with three different diets: high phytoestrogen (ca. 400 mg/kg genistein), low phytoestrogen (ca. 10 mg/kg genistein) and standard breeding diet (ca. 120 mg/kg genistein). Mice fed a high phytoestrogen diet had a high yield of plugs, embryos, and injectable embryos, as well as producing good quality embryos. Results from donor mice fed a low phytoestrogen diet were consistently but only slightly inferior, whereas mice fed a standard diet performed the poorest. Interestingly, the largest number of born and weaned offspring were observed when recipient females received embryos from the standard diet group. Sperm yield and quality of stud males did not differ between the groups. We surmize that for experimental endpoints requiring fertilized embryos it may be more beneficial to feed mice a diet containing phytoestrogen, but if the goal is to produce transgenic mice, a diet high in phytoestrogen may be inadvisable. In conclusion, care should be taken when selecting a diet for experimental mouse colonies as phytoestrogen could influence the study outcome

    Mouse reproductive fitness is maintained up to an ambient temperature of 28°C when housed in individually-ventilated cages

    Get PDF
    Production of genetically-modified mice is strongly dependent on environmental conditions. Mice are commonly housed at 22°C, which is significantly lower than their thermoneutral zone. But, when given a choice, mice often seem to prefer higher ambient temperatures. In the current study we investigated the effect of higher ambient temperature on the production of transgenic mice, with emphasis on embryo and sperm yield and quality. Mice (C57BL/6JOlaHsd) were housed under four different ambient temperatures (22, 25, 28 and 30°C). Female mice were superovulated, and mated with males. As indicators for reproductive fitness, the success of the mating was observed, including embryo yield and quality, as well as sperm count, motility and progressivity. Female mice were found to produce high amounts of high quality embryos from 22 to 28°C. Sperm count dropped continuously from 22 to 30°C, but sperm motility and progressivity remained high from 22 to 28°C. We conclude that mice can be housed at significantly higher temperatures than is commonly recommended without compromising embryo production and quality, or sperm quality. These results could lead to fundamental changes in how mouse facilities are built and operated – especially in warmer climates whereby energy consumption and therefore costs could be significantly reduced

    Mouse reproductive fitness is maintained up to an ambient temperature of 28℃ when housed in individually-ventilated cages.

    No full text
    Production of genetically-modified mice is strongly dependent on environmental conditions. Mice are commonly housed at 22℃, which is significantly lower than their thermoneutral zone. But, when given a choice, mice often seem to prefer higher ambient temperatures. In the current study we investigated the effect of higher ambient temperature on the production of transgenic mice, with emphasis on embryo and sperm yield and quality. Mice (C57BL/6JOlaHsd) were housed under four different ambient temperatures (22, 25, 28 and 30℃). Female mice were superovulated, and mated with males. As indicators for reproductive fitness, the success of the mating was observed, including embryo yield and quality, as well as sperm count, motility and progressivity. Female mice were found to produce high amounts of high quality embryos from 22 to 28℃. Sperm count dropped continuously from 22 to 30℃, but sperm motility and progressivity remained high from 22 to 28℃. We conclude that mice can be housed at significantly higher temperatures than is commonly recommended without compromising embryo production and quality, or sperm quality. These results could lead to fundamental changes in how mouse facilities are built and operated - especially in warmer climates whereby energy consumption and therefore costs could be significantly reduced

    The Mysterious Case

    No full text

    Does diet influence salivary enzyme activities in elephant species?

    No full text

    Novel Bedding Material Results in Poor Pregnancy Rate with CD-1 Female Mice Used as Fosters for Producing Transgenic Mice

    No full text
    The impact of a novel bedding material (cotton cloth) on the reproductive performance (pregnancy rate and production of offspring) was studied in foster females used for producing transgenic mice. Embryos injected with DNA were transferred to pseudo-pregnant foster females housed under standard conditions (aspen bedding and nesting material). After embryo transfer, mice were divided between the experimental group (AGREBE cotton cloth) and control group (aspen bedding and nesting material). Pregnant mice were observed at day 15 after the transfer and the number of offspring was recorded on post-natal days 3 and 21. Altogether 116 foster mice were used as embryo recipients. Significantly more pregnancies were observed in the control group versus the experimental group: 43% and 19% of foster mice, respectively. Informal interviews with animal caretakers revealed a general dislike towards the cotton cloth (dirtier cages, mice often found on the plastic cage surface, difficult husbandry routines). The cotton cloth showed major signs of wear and tear after only a few weeks of usage. In conclusion, this study with female mice demonstrated that a cotton cloth cannot be recommended as a sole replacement for bedding and nesting material
    corecore