1,633 research outputs found
Infrared cutoffs and the adiabatic limit in noncommutative spacetime
We discuss appropriate infrared cutoffs and their adiabatic limit for field
theories on the noncommutative Minkowski space in the Yang-Feldman formalism.
In order to do this, we consider a mass term as interaction term. We show that
an infrared cutoff can be defined quite analogously to the commutative case and
that the adiabatic limit of the two-point function exists and coincides with
the expectation, to all orders.Comment: 19 page
CMB Lensing Power Spectrum Biases from Galaxies and Clusters using High-angular Resolution Temperature Maps
The lensing power spectrum from cosmic microwave background (CMB) temperature
maps will be measured with unprecedented precision with upcoming experiments,
including upgrades to ACT and SPT. Achieving significant improvements in
cosmological parameter constraints, such as percent level errors on sigma_8 and
an uncertainty on the total neutrino mass of approximately 50 meV, requires
percent level measurements of the CMB lensing power. This necessitates tight
control of systematic biases. We study several types of biases to the
temperature-based lensing reconstruction signal from foreground sources such as
radio and infrared galaxies and the thermal Sunyaev-Zel'dovich effect from
galaxy clusters. These foregrounds bias the CMB lensing signal due to their
non-Gaussian nature. Using simulations as well as some analytical models we
find that these sources can substantially impact the measured signal if left
untreated. However, these biases can be brought to the percent level if one
masks galaxies with fluxes at 150 GHz above 1 mJy and galaxy clusters with
masses above M_vir = 10^14 M_sun. To achieve such percent level bias, we find
that only modes up to a maximum multipole of l_max ~ 2500 should be included in
the lensing reconstruction. We also discuss ways to minimize additional bias
induced by such aggressive foreground masking by, for example, exploring a
two-step masking and in-painting algorithm.Comment: 14 pages, 14 figures, to be submitted to Ap
Angular momentum extraction by gravity waves in the Sun
We review the behavior of the oscillating shear layer produced by gravity
waves below the surface convection zone of the Sun. We show that, under
asymmetric filtering produced by this layer, gravity waves of low spherical
order, which are stochastically excited at the base of the convection zone of
late type stars, can extract angular momentum from their radiative interior.
The time-scale for this momentum extraction in a Sun-like star is of the order
of 10^7 years. The process is particularly efficient in the central region, and
it could produce there a slowly rotating core.Comment: 9 pages, 3 figues, accepted by Astrophysical Journal Letter, 26 June
200
Cosmic Microwave Background Constraints on the Duration and Timing of Reionization from the South Pole Telescope
The epoch of reionization is a milestone of cosmological structure formation, marking the birth of the first objects massive enough to yield large numbers of ionizing photons. However, the mechanism and timescale of reionization remain largely unknown. Measurements of the cosmic microwave background (CMB) Doppler effect from ionizing bubbles embedded in large-scale velocity streams—known as the patchy kinetic Sunyaev-Zel'dovich (kSZ) effect—can be used to constrain the duration of reionization. When combined with large-scale CMB polarization measurements, the evolution of the ionized fraction, x-bar_(e), can be inferred. Using new multi-frequency data from the South Pole Telescope (SPT), we show that the ionized fraction evolved relatively rapidly. For our basic foreground model, we find the kSZ power sourced by reionization at ℓ = 3000 to be D^(patchy)_3000 ≤ 2.1 μK^2 at 95% confidence. Using reionization simulations, we translate this to a limit on the duration of reionization of Δz≡z_(x-bar)_e=0.20 - z_(x-bar)_e=0.99≤4.4 (95% confidence). We find that this constraint depends on assumptions about the angular correlation between the thermal SZ power and the cosmic infrared background (CIB). Introducing the degree of correlation as a free parameter, we find that the limit on kSZ power weakens to D^(patchy)_3000 ≤ 4.9 μK^2, implying Δz ≤ 7.9 (95% confidence). We combine the SPT constraint on the duration of reionization with the Wilkinson Microwave Anisotropy Probe measurement of the integrated optical depth to probe the cosmic ionization history. We find that reionization ended with 95% confidence at z > 7.2 under the assumption of no tSZ-CIB correlation, and z > 5.8 when correlations are allowed. Improved constraints from the full SPT data set in conjunction with upcoming Herschel and Planck data should detect extended reionization at >95% confidence provided Δz ≥ 2. These CMB observations complement other observational probes of the epoch of reionization such as the redshifted 21 cm line and narrowband surveys for Lyα-emitting galaxies
Modeling Extragalactic Foregrounds and Secondaries for Unbiased Estimation of Cosmological Parameters From Primary CMB Anisotropy
Using the latest physical modeling and constrained by the most recent data,
we develop a phenomenological parameterized model of the contributions to
intensity and polarization maps at millimeter wavelengths from external
galaxies and Sunyaev-Zeldovich effects. We find such modeling to be necessary
for estimation of cosmological parameters from Planck data. For example,
ignoring the clustering of the infrared background would result in a bias in
n_s of 7 sigma. We show that the simultaneous marginalization over a full
foreground model can eliminate such biases, while increasing the statistical
uncertainty in cosmological parameters by less than 20%. The small increases in
uncertainty can be significantly reduced with the inclusion of
higher-resolution ground-based data.
The multi-frequency analysis we employ involves modeling 46 total power
spectra and marginalization over 17 foreground parameters. We show that we can
also reduce the data to a best estimate of the CMB power spectra, and just two
principal components (with constrained amplitudes) describing residual
foreground contamination.Comment: 17 pages, 7 figures, submitted to Ap
Systematic Two-band Model Calculations of the GMR Effect with Metallic and Nonmetallic Spacers and with Impurities
By an accurate Green's function method we calculate conductances and the
corresponding Giant Magneto-Resistance effects (GMR) of two metallic
ferromagnetic films separated by different spacers, metallic and non-metallic
ones, in a simplified model on a sc lattice, in CPP and CIP geometries (i.e.
current perpendicular or parallel to the planes), without impurities, or with
interface- or bulk impurities. The electronic structure of the systems is
approximated by two hybridized orbitals per atom, to mimic s-bands and d-bands
and their hybridization.
We show that such calculations usually give rough estimates only, but of the
correct order of magnitude; in particular, the predictions on the impurity
effects depend strongly on the model parameters. One of our main results is the
prediction of huge CPP-GMR effects for {\it non-metallic} spacers in the
ballistic limit.Comment: Revised version; discussions and references improved; accepted by
JMM
Biodegradable magnetic microspheres for drug targeting, temperature controlled drug release, and hyperthermia
Magnetic microspheres (MMS) used for magnetic drug targeting consist of magnetic nanoparticles (MNP) and a pharmaceutical agent embedded in a polymeric matrix material. The application of MNP for drug targeting enables
guiding the MMS to a target area, imaging the position of the MMS with magnetic particle imaging, and finally inducing drug release. As latter takes place by degradation of the MMS or diffusion through the matrix, an increase in temperature, e.g. through magnetic hyperthermia, leads to an accelerated
drug release. Here, MMS consisting of poly(lactic-coglycolic) acid (PLGA) with different monomer ratios were prepared by an oil-in-water emulsion evaporation method. The model drug Camptothecin (CPT) and magnetic multicore nanoparticles (MCNP) with a high specific heating rate were
embedded into the microspheres. We obtained MMS in the preferred size range of 1 to 2 μm with a concentration of MCNP of 16wt%, a drug load of about 0.5wt% and an excellent heating performance of 161 W/gMMS. Investigations of the drug release behaviour showed an accelerated drug
release when increasing the temperature from 20 °C to 37 °C or 43 °C by using a water bath. In addition, an increase in drug release of about 50% through magnetic heating of the MMS up to 44 °C compared to 37 °C was observed. By this, a magnetic hyperthermia induced CPT release from PLGA
MMS is demonstrated for the very first time
- …