749 research outputs found

    Comic Literature and Graphic Novel Uses in History, Literature, Math, and Science

    Get PDF
    Graphic novels and comics have a rich history and have long served as a medium for both education and entertainment. Although we live in an increasingly technology-rich era which offers abundant visual stimulation to compete with comics, graphic literature is arguably a more immediate and robust resource than ever before. The following paper highlights specific applications of graphic literature to pedagogical purposes, including implications for the use of comics in teaching history, world languages, English as a new language, science, and mathematics. Across these areas, a wide degree of application exists for teachers, in both K-12 and post-secondary settings. In addition, we draw upon the history of comics itself and the relationship between graphic literature and other popular media to demonstrate how the study of comics is itself a powerful lens through which to study history and sharpen skills for critical inquiry that hold utility across academic disciplines. The potential of graphic literature to be both a vehicle for teaching and learning academic content, as well as a topic that is itself worthy of deliberate study, is an essential theme explored by this paper with an emphasis on concrete examples which may be applied to educational practice

    Group Gender Composition and Work Group Relations: Theories, Evidence, and Issues

    Get PDF
    [Excerpt] Prior to the publication of Kanter\u27s seminal Men and Women of the Corporation in 1977, the field of organizational studies exhibited a striking degree of oblivion to the effect of gender relations on work group dynamics. This neglect may have been due, in part, to the relatively small proportion of women in the labor force in the first half of the 20th century, as well as to high levels of occupational and job segregation, which helped conceal the influence of group gender composition on individual and group behavior. In the postwar years, however, women\u27s rate of entry into the labor force nearly doubled that of the preceding three decades, and women began to occupy many jobs and occupations that had been the near-exclusive province of men. In this context, Kanter\u27s provocative analysis of the impact of work group gender composition on group relations served as the impetus for an outpouring of both theoretical and empirical work. Studies following Kanter\u27s have explored the effects of gender composition on a wide range of outcomes, based on a variety of theoretical perspectives. In this chapter, we review five major theoretical paradigms that, singly or in combination, have provided the underpinning for most empirical studies, then review the findings from empirical work, focusing on the degree to which they provide support for each perspective. In concluding, we identify several avenues that merit greater attention in future research and theorizing

    Atmospheric Condensed-Phase Reactions of Glyoxal with Methylamine

    Get PDF
    [1] Glyoxal reacts with methylamine in drying cloud droplet/aerosol surrogates to form high molecular mass oligomers along with smaller amounts of 1,3-dimethylimidazole and light-absorbing compounds. The patterns observed by high-resolution time-of-flight aerosol mass spectrometry indicate that oligomers form from repeated imine units. The reactions are 1st order in each reactant: rate-limiting imine formation is followed by rapid dimer and oligomer formation. While excess methylamine evaporates from the droplet, half the glyoxal does not, due to self-oligomerization reactions that occur in the absence of methylamine. Glyoxal irreversibly traps volatile amine compounds in the aerosol phase, converting them into oligomers. This is the first reported mechanism for the formation of stable secondary organic aerosol (SOA) material from methylamine, a substance with only one carbon, and could produce as much as 11 Tg SOA yr−1 globally if glyoxal reacts exclusively by this pathway

    The Thermal Properties of Solar Flares Over Three Solar Cycles Using GOES X-ray Observations

    Full text link
    Solar flare X-ray emission results from rapidly increasing temperatures and emission measures in flaring active region loops. To date, observations from the X-Ray Sensor (XRS) onboard the Geostationary Operational Environmental Satellite (GOES) have been used to derive these properties, but have been limited by a number of factors, including the lack of a consistent background subtraction method capable of being automatically applied to large numbers of flares. In this paper, we describe an automated temperature and emission measure-based background subtraction method (TEBBS), which builds on the methods of Bornmann (1990). Our algorithm ensures that the derived temperature is always greater than the instrumental limit and the pre-flare background temperature, and that the temperature and emission measure are increasing during the flare rise phase. Additionally, TEBBS utilizes the improved estimates of GOES temperatures and emission measures from White et al. (2005). TEBBS was successfully applied to over 50,000 solar flares occurring over nearly three solar cycles (1980-2007), and used to create an extensive catalog of the solar flare thermal properties. We confirm that the peak emission measure and total radiative losses scale with background subtracted GOES X-ray flux as power-laws, while the peak temperature scales logarithmically. As expected, the peak emission measure shows an increasing trend with peak temperature, although the total radiative losses do not. While these results are comparable to previous studies, we find that flares of a given GOES class have lower peak temperatures and higher peak emission measures than previously reported. The resulting TEBBS database of thermal flare plasma properties is publicly available on Solar Monitor (www.solarmonitor.org/TEBBS/) and will be available on Heliophysics Integrated Observatory (www.helio-vo.eu)

    Brown Carbon Production by Aqueous-Phase Interactions of Glyoxal and SO2

    Get PDF
    Oxalic acid and sulfate salts are major components of aerosol particles. Here, we explore the potential for their respective precursor species, glyoxal and SO2, to form atmospheric brown carbon via aqueous-phase reactions in a series of bulk aqueous and flow chamber aerosol experiments. In bulk aqueous solutions, UV- and visible-light-absorbing products are observed at pH 3–4 and 5–6, respectively, with small but detectable yields of hydroxyquinone and polyketone products formed, especially at pH 6. Hydroxymethanesulfonate (HMS), C2, and C3 sulfonates are major products detected by electrospray ionization mass spectrometry (ESI-MS) at pH 5. Past studies have assumed that the reaction of formaldehyde and sulfite was the only atmospheric source of HMS. In flow chamber experiments involving sulfite aerosol and gas-phase glyoxal with only 1 min residence times, significant aerosol growth is observed. Rapid brown carbon formation is seen with aqueous aerosol particles at \u3e80% relative humidity (RH). Brown carbon formation slows at 50–60% RH and when the aerosol particles are acidified with sulfuric acid but stops entirely only under dry conditions. This chemistry may therefore contribute to brown carbon production in cloud-processed pollution plumes as oxidizing volatile organic compounds (VOCs) interact with SO2 and water

    Metastability in pressure-induced structural transformations of CdSe/ZnS core/shell nanocrystals

    Full text link
    The kinetics and thermodynamics of structural transformations under pressure depend strongly on particle size due to the influence of surface free energy. By suitable design of surface structure, composition, and passivation it is possible, in principle, to prepare nanocrystals in structures inaccessible to bulk materials. However, few realizations of such extreme size-dependent behavior exist. Here we show with molecular dynamics computer simulation that in a model of CdSe/ZnS core/shell nanocrystals the core high pressure structure can be made metastable under ambient conditions by tuning the thickness of the shell. In nanocrystals with thick shells, we furthermore observe a wurtzite to NiAs transformation, which does not occur in the pure bulk materials. These phenomena are linked to a fundamental change in the atomistic transformation mechanism from heterogenous nucleation at the surface to homogenous nucleation in the crystal core. Our results suggest a new route towards expanding the range of available nanoscale materials

    Glyoxal’s impact on dry ammonium salts: fast and reversible surface aerosol browning

    Get PDF
    Alpha-dicarbonyl compounds are believed to form brown carbon in the atmosphere via reactions with ammonium sulfate (AS) in cloud droplets and aqueous aerosol particles. In this work, brown carbon formation in AS and other aerosol particles was quantified as a function of relative humidity (RH) during exposure to gas-phase glyoxal (GX) in chamber experiments. Under dry conditions (RH \u3c 5%), solid AS, AS/glycine, and methylammonium sulfate aerosol particles brown within minutes upon exposure to GX, while sodium sulfate particles do not. When GX concentrations decline, browning goes away, demonstrating that this dry browning process is reversible. Declines in aerosol albedo are found to be a function of [GX]2, and are consistent between AS and AS/glycine aerosol. Dry methylammonium sulfate aerosol browns 4´ more than dry AS aerosol, but deliquesced AS aerosol browns much less than dry AS aerosol. Optical measurements at 405, 450, and 530 nm provide an estimated Ångstrom absorbance coefficient of -16 ±4. This coefficient and the empirical relationship between GX and albedo are used to estimate an upper limit to global radiative forcing by brown carbon formed by 70 ppt GX reacting with AS (+7.6 ´10-5 W/m2). This quantity is \u3c 1% of the total radiative forcing by secondary brown carbon, but occurs almost entirely in the ultraviolet range

    Evaluation Research and Institutional Pressures: Challenges in Public-Nonprofit Contracting

    Get PDF
    This article examines the connection between program evaluation research and decision-making by public managers. Drawing on neo-institutional theory, a framework is presented for diagnosing the pressures and conditions that lead alternatively toward or away the rational use of evaluation research. Three cases of public-nonprofit contracting for the delivery of major programs are presented to clarify the way coercive, mimetic, and normative pressures interfere with a sound connection being made between research and implementation. The article concludes by considering how public managers can respond to the isomorphic pressures in their environment that make it hard to act on data relating to program performance.This publication is Hauser Center Working Paper No. 23. The Hauser Center Working Paper Series was launched during the summer of 2000. The Series enables the Hauser Center to share with a broad audience important works-in-progress written by Hauser Center scholars and researchers

    ‘We Learn Together’—Translanguaging within a Holistic Approach towards Multilingualism in Education

    Get PDF
    Within two multilingual education projects in the north of the Netherlands a holistic model for multilingualism in education is being tested. This is done through design-based interventions in which in- and pre-service teachers, teacher trainers and researchers co-develop and evaluate multilingual activities for different school types. Results show that through experimenting in a safe environment teachers gradually embraced their pupils’ multilingualism. This contradicts earlier findings on teachers strongly favouring monolingual instruction and viewing migrant languages as a deficit.<br/
    • …
    corecore