914 research outputs found

    Detailed Analysis of Nearby Bulgelike Dwarf Stars III. Alpha and Heavy-element abundances

    Full text link
    The present sample of nearby bulgelike dwarf stars has kinematics and metallicities characteristic of a probable inner disk or bulge origin. Ages derived by using isochrones give 10-11 Gyr for these stars and metallicities are in the range -0.80< [Fe/H]< +0.40. We calculate stellar parameters from spectroscopic data, and chemical abundances of Mg, Si, Ca, Ti, La, Ba, Y, Zr and Eu are derived by using spectrum synthesis. We found that [alpha-elements/Fe] show different patterns depending on the element. Si, Ca and Ti-to-iron ratios decline smoothly for increasing metallicities, and follow essentially the disk pattern. O and Mg, products of massive supernovae, and also the r-process element Eu, are overabundant relative to disk stars, showing a steeper decline for metallicities [Fe/H] > -0.3 dex. [s-elements/Fe] roughly track the solar values with no apparent trend with metallicity for [Fe/H] < 0, showing subsolar values for the metal rich stars. Both kinematical and chemical properties of the bulgelike stars indicate a distinct identity of this population when compared to disk stars.Comment: 21 pages, 9 figures, to appear in Ap

    Magnesium isotope ratios in Hyades stars

    Full text link
    Using classical model atmospheres and an LTE analysis, Mg isotope ratios 24Mg:25Mg:26Mg are measured in 32 Hyades dwarfs covering 4000K < Teff < 5000K. We find no significant trend in any isotope ratio versus Teff and the mean isotope ratio is in excellent agreement with the solar value. We determine stellar parameters and Fe abundances for 56 Hyades dwarfs covering 4000K < Teff < 6200K. For stars warmer than 4700K, we derive a cluster mean value of [Fe/H] = 0.16 +/- 0.02 (sigma=0.1), in good agreement with previous studies. For stars cooler than 4700K, we find that the abundance of Fe from ionized lines exceeds the abundance of Fe from neutral lines. At 4700K [Fe/H]_II - [Fe/H]_I = 0.3 dex while at 4000K [Fe/H]_II - [Fe/H]_I = 1.2 dex. This discrepancy between the Fe abundance from neutral and ionized lines likely reflects inadequacies in the model atmospheres and the presence of Non-LTE or other effects. Despite the inability of the models to reproduce ionization equilibrium for Fe, the Mg isotope ratios appear immune to these problems and remain a powerful tool for studying Galactic chemical evolution.Comment: ApJ in press (March 10 2004

    Proteolytic Processing of Nlrp1b Is Required for Inflammasome Activity

    Get PDF
    Nlrp1b is a NOD-like receptor that detects the catalytic activity of anthrax lethal toxin and subsequently co-oligomerizes into a pro-caspase-1 activation platform known as an inflammasome. Nlrp1b has two domains that promote oligomerization: a NACHT domain, which is a member of the AAA+ ATPase family, and a poorly characterized Function to Find Domain (FIIND). Here we demonstrate that proteolytic processing within the FIIND generates N-terminal and C-terminal cleavage products of Nlrp1b that remain associated in both the auto-inhibited state and in the activated state after cells have been treated with lethal toxin. Functional significance of cleavage was suggested by the finding that mutations that block processing of Nlrp1b also prevent the ability of Nlrp1b to activate pro-caspase-1. By using an uncleaved mutant of Nlrp1b, we established the importance of cleavage by inserting a heterologous TEV protease site into the FIIND and demonstrating that TEV protease processed this site and induced inflammasome activity. Proteolysis of Nlrp1b was shown to be required for the assembly of a functional inflammasome: a mutation within the FIIND that abolished cleavage had no effect on self-association of a FIIND-CARD fragment, but did reduce the recruitment of pro-caspase-1. Our work indicates that a post-translational modification enables Nlrp1b to function

    Characterization of the Metabolic Phenotype of Rapamycin-Treated CD8+ T Cells with Augmented Ability to Generate Long-Lasting Memory Cells

    Get PDF
    Cellular metabolism plays a critical role in regulating T cell responses and the development of memory T cells with long-term protections. However, the metabolic phenotype of antigen-activated T cells that are responsible for the generation of long-lived memory cells has not been characterized.. than untreated control T cells. In contrast to that control T cells only increased glycolysis, rapamycin-treated T cells upregulated both glycolysis and oxidative phosphorylation (OXPHOS). These rapamycin-treated T cells had greater ability than control T cells to survive withdrawal of either glucose or growth factors. Inhibition of OXPHOS by oligomycin significantly reduced the ability of rapamycin-treated T cells to survive growth factor withdrawal. This effect of OXPHOS inhibition was accompanied with mitochondrial hyperpolarization and elevation of reactive oxygen species that are known to be toxic to cells.Our findings indicate that these rapamycin-treated T cells may represent a unique cell model for identifying nutrients and signals critical to regulating metabolism in both effector and memory T cells, and for the development of new methods to improve the efficacy of adoptive T cell cancer therapy

    Search for the decay J/ψ→γ+invisibleJ/\psi\to\gamma + \rm {invisible}

    Full text link
    We search for J/ψJ/\psi radiative decays into a weakly interacting neutral particle, namely an invisible particle, using the J/ψJ/\psi produced through the process ψ(3686)→π+π−J/ψ\psi(3686)\to\pi^+\pi^-J/\psi in a data sample of (448.1±2.9)×106(448.1\pm2.9)\times 10^6 ψ(3686)\psi(3686) decays collected by the BESIII detector at BEPCII. No significant signal is observed. Using a modified frequentist method, upper limits on the branching fractions are set under different assumptions of invisible particle masses up to 1.2  GeV/c2\mathrm{\ Ge\kern -0.1em V}/c^2. The upper limit corresponding to an invisible particle with zero mass is 7.0×10−7\times 10^{-7} at the 90\% confidence level

    First observations of hc→h_c \to hadrons

    Get PDF
    Based on (4.48±0.03)×108(4.48 \pm 0.03) \times 10^{8} ψ(3686)\psi(3686) events collected with the BESIII detector, five hch_c hadronic decays are searched for via process ψ(3686)→π0hc\psi(3686) \to \pi^0 h_c. Three of them, hc→ppˉπ+π−h_c \to p \bar{p} \pi^+ \pi^-, π+π−π0\pi^+ \pi^- \pi^0, and 2(π+π−)π02(\pi^+ \pi^-) \pi^0 are observed for the first time, with statistical significances of 7.4σ\sigma, 4.9σ4.9\sigma, and 9.1σ\sigma, and branching fractions of (2.89±0.32±0.55)×10−3(2.89\pm0.32\pm0.55)\times10^{-3}, (1.60±0.40±0.32)×10−3(1.60\pm0.40\pm0.32)\times10^{-3}, and (7.44±0.94±1.56)×10−3(7.44\pm0.94\pm1.56)\times10^{-3}, respectively, where the first uncertainties are statistical and the second systematic. No significant signal is observed for the other two decay modes, and the corresponding upper limits of the branching fractions are determined to be B(hc→3(π+π−)π0)<8.7×10−3B(h_c \to 3(\pi^+ \pi^-) \pi^0)<8.7\times10^{-3} and B(hc→K+K−π+π−)<5.8×10−4B(h_c \to K^+ K^- \pi^+ \pi^-)<5.8\times10^{-4} at 90% confidence level.Comment: 17 pages, 16 figure

    Measurement of proton electromagnetic form factors in e+e−→ppˉe^+e^- \to p\bar{p} in the energy region 2.00-3.08 GeV

    Full text link
    The process of e+e−→ppˉe^+e^- \rightarrow p\bar{p} is studied at 22 center-of-mass energy points (s\sqrt{s}) from 2.00 to 3.08 GeV, exploiting 688.5~pb−1^{-1} of data collected with the BESIII detector operating at the BEPCII collider. The Born cross section~(σppˉ\sigma_{p\bar{p}}) of e+e−→ppˉe^+e^- \rightarrow p\bar{p} is measured with the energy-scan technique and it is found to be consistent with previously published data, but with much improved accuracy. In addition, the electromagnetic form-factor ratio (∣GE/GM∣|G_{E}/G_{M}|) and the value of the effective (∣Geff∣|G_{\rm{eff}}|), electric (∣GE∣|G_E|) and magnetic (∣GM∣|G_M|) form factors are measured by studying the helicity angle of the proton at 16 center-of-mass energy points. ∣GE/GM∣|G_{E}/G_{M}| and ∣GM∣|G_M| are determined with high accuracy, providing uncertainties comparable to data in the space-like region, and ∣GE∣|G_E| is measured for the first time. We reach unprecedented accuracy, and precision results in the time-like region provide information to improve our understanding of the proton inner structure and to test theoretical models which depend on non-perturbative Quantum Chromodynamics

    Precise Measurements of Branching Fractions for Ds+D_s^+ Meson Decays to Two Pseudoscalar Mesons

    Get PDF
    We measure the branching fractions for seven Ds+D_{s}^{+} two-body decays to pseudo-scalar mesons, by analyzing data collected at s=4.178∼4.226\sqrt{s}=4.178\sim4.226 GeV with the BESIII detector at the BEPCII collider. The branching fractions are determined to be B(Ds+→K+η′)=(2.68±0.17±0.17±0.08)×10−3\mathcal{B}(D_s^+\to K^+\eta^{\prime})=(2.68\pm0.17\pm0.17\pm0.08)\times10^{-3}, B(Ds+→η′π+)=(37.8±0.4±2.1±1.2)×10−3\mathcal{B}(D_s^+\to\eta^{\prime}\pi^+)=(37.8\pm0.4\pm2.1\pm1.2)\times10^{-3}, B(Ds+→K+η)=(1.62±0.10±0.03±0.05)×10−3\mathcal{B}(D_s^+\to K^+\eta)=(1.62\pm0.10\pm0.03\pm0.05)\times10^{-3}, B(Ds+→ηπ+)=(17.41±0.18±0.27±0.54)×10−3\mathcal{B}(D_s^+\to\eta\pi^+)=(17.41\pm0.18\pm0.27\pm0.54)\times10^{-3}, B(Ds+→K+KS0)=(15.02±0.10±0.27±0.47)×10−3\mathcal{B}(D_s^+\to K^+K_S^0)=(15.02\pm0.10\pm0.27\pm0.47)\times10^{-3}, B(Ds+→KS0π+)=(1.109±0.034±0.023±0.035)×10−3\mathcal{B}(D_s^+\to K_S^0\pi^+)=(1.109\pm0.034\pm0.023\pm0.035)\times10^{-3}, B(Ds+→K+π0)=(0.748±0.049±0.018±0.023)×10−3\mathcal{B}(D_s^+\to K^+\pi^0)=(0.748\pm0.049\pm0.018\pm0.023)\times10^{-3}, where the first uncertainties are statistical, the second are systematic, and the third are from external input branching fraction of the normalization mode Ds+→K+K−π+D_s^+\to K^+K^-\pi^+. Precision of our measurements is significantly improved compared with that of the current world average values

    Measurements of Weak Decay Asymmetries of Λc+→pKS0\Lambda_c^+\to pK_S^0, Λπ+\Lambda\pi^+, Σ+π0\Sigma^+\pi^0, and Σ0π+\Sigma^0\pi^+

    Get PDF
    Using e+e−→Λc+Λˉc−e^+e^-\to\Lambda_c^+\bar\Lambda_c^- production from a 567 pb−1^{-1} data sample collected by BESIII at 4.6 GeV, a full angular analysis is carried out simultaneously on the four decay modes of Λc+→pKS0\Lambda_c^+\to pK_S^0, Λπ+\Lambda \pi^+, Σ+π0\Sigma^+\pi^0, and Σ0π+\Sigma^0\pi^+. For the first time, the Λc+\Lambda_c^+ transverse polarization is studied in unpolarized e+e−e^+e^- collisions, where a non-zero effect is observed with a statistical significance of 2.1σ\sigma. The decay asymmetry parameters of the Λc+\Lambda_c^+ weak hadronic decays into pKS0pK_S^0, Λπ+\Lambda\pi^+, Σ+π0\Sigma^+\pi^0 and Σ0π+\Sigma^0\pi^+ are measured to be 0.18±0.43(stat)±0.14(syst)0.18\pm0.43(\rm{stat})\pm0.14(\rm{syst}), −0.80±0.11(stat)±0.02(syst)-0.80\pm0.11(\rm{stat})\pm0.02(\rm{syst}), −0.57±0.10(stat)±0.07(syst)-0.57\pm0.10(\rm{stat})\pm0.07(\rm{syst}), and −0.73±0.17(stat)±0.07(syst)-0.73\pm0.17(\rm{stat})\pm0.07(\rm{syst}), respectively. In comparison with previous results, the measurements for the Λπ+\Lambda\pi^+ and Σ+π0\Sigma^+\pi^0 modes are consistent but with improved precision, while the parameters for the pKS0pK_S^0 and Σ0π+\Sigma^0\pi^+ modes are measured for the first time

    The Homeodomain Derived Peptide Penetratin Induces Curvature of Fluid Membrane Domains

    Get PDF
    BACKGROUND:Protein membrane transduction domains that are able to cross the plasma membrane are present in several transcription factors, such as the homeodomain proteins and the viral proteins such as Tat of HIV-1. Their discovery resulted in both new concepts on the cell communication during development, and the conception of cell penetrating peptide vectors for internalisation of active molecules into cells. A promising cell penetrating peptide is Penetratin, which crosses the cell membranes by a receptor and metabolic energy-independent mechanism. Recent works have claimed that Penetratin and similar peptides are internalized by endocytosis, but other endocytosis-independent mechanisms have been proposed. Endosomes or plasma membranes crossing mechanisms are not well understood. Previously, we have shown that basic peptides induce membrane invaginations suggesting a new mechanism for uptake, "physical endocytosis". METHODOLOGY/PRINCIPAL FINDINGS:Herein, we investigate the role of membrane lipid phases on Penetratin induced membrane deformations (liquid ordered such as in "raft" microdomains versus disordered fluid "non-raft" domains) in membrane models. Experimental data show that zwitterionic lipid headgroups take part in the interaction with Penetratin suggesting that the external leaflet lipids of cells plasma membrane are competent for peptide interaction in the absence of net negative charges. NMR and X-ray diffraction data show that the membrane perturbations (tubulation and vesiculation) are associated with an increase in membrane negative curvature. These effects on curvature were observed in the liquid disordered but not in the liquid ordered (raft-like) membrane domains. CONCLUSIONS/SIGNIFICANCE:The better understanding of the internalisation mechanisms of protein transduction domains will help both the understanding of the mechanisms of cell communication and the development of potential therapeutic molecular vectors. Here we showed that the membrane targets for these molecules are preferentially the fluid membrane domains and that the mechanism involves the induction of membrane negative curvature. Consequences on cellular uptake are discussed
    • …
    corecore