52 research outputs found

    CD24-targeted intraoperative fluorescence image-guided surgery leads to improved cytoreduction of ovarian cancer in a preclinical orthotopic surgical model

    Get PDF
    Background: The completeness of resection is a key prognostic indicator in patients with ovarian cancer, and the application of tumour-targeted fluorescence image-guided surgery (FIGS) has led to improved detection of peritoneal metastases during cytoreductive surgery. CD24 is highly expressed in ovarian cancer and has been shown to be a suit

    Immune cells control skin lymphatic electrolyte homeostasis and blood pressure

    Get PDF
    The skin interstitium sequesters excess Na+ and Cl- in salt-sensitive hypertension. Mononuclear phagocyte system (MPS) cells are recruited to the skin, sense the hypertonic electrolyte accumulation in skin, and activate the tonicity-responsive enhancer-binding protein (TONEBP, also known as NFAT5) to initiate expression and secretion of VEGFC, which enhances electrolyte clearance via cutaneous lymph vessels and increases eNOS expression in blood vessels. It is unclear whether this local MPS response to osmotic stress is important to systemic blood pressure control. Herein, we show that deletion of TonEBP in mouse MPS cells prevents the VEGFC response to a high-salt diet (HSD) and increases blood pressure. Additionally, an antibody that blocks the lymph-endothelial VEGFC receptor, VEGFR3, selectively inhibited MPS-driven increases in cutaneous lymphatic capillary density, led to skin Cl- accumulation, and induced salt-sensitive hypertension. Mice overexpressing soluble VEGFR3 in epidermal keratinocytes exhibited hypoplastic cutaneous lymph capillaries and increased Na+, Cl-, and water retention in skin and salt-sensitive hypertension. Further, we found that HSD elevated skin osmolality above plasma levels. These results suggest that the skin contains a hypertonic interstitial fluid compartment in which MPS cells exert homeostatic and blood pressure-regulatory control by local organization of interstitial electrolyte clearance via TONEBP and VEGFC/VEGFR3-mediated modification of cutaneous lymphatic capillary function

    The changes in renal function after a single dose of intravenous furosemide in patients with compensated liver cirrhosis

    Get PDF
    BACKGROUND: Patients with compensated Child-A cirrhosis have sub clinical hypovolemia and diuretic treatment could result in renal impairment. AIM: To evaluate the changes in renal functional mass as reflected by DMSA uptake after single injection of intravenous furosemide in patients with compensated liver cirrhosis. METHODS: Eighteen cirrhotic patients were divided in two groups; eight patients (group 1, age 56 ± 9.6 yrs, Gender 5M/3F, 3 alcoholic and 5 non alcoholic) were given low intravenous 40 mg furosemide and ten other patients (group 2, age 54 ± 9.9, Gender 6M/4F, 4 alcoholic and 6 non alcoholic) were given high 120 mg furosemide respectively. Renoscintigraphy with 100MBq Of Tc 99 DMSA was given intravenously before and 90 minutes after furosemide administration and SPECT imaging was determined 3 hours later. All patients were kept under low sodium diet (80mEq/d) and all diuretics were withdrawn for 3 days. 8-hours UNa exertion, Calculated and measured Creatinine clearance (CCT) were performed for all patients. RESULTS: Intravenous furosemide increased the mean renal DMSA uptake in 55% of patients with compensated cirrhosis and these changes persist up to three hours after injection. This increase was at the same extent in either low or high doses of furosemide. (From 12.8% ± 3.8 to 15.2% ± 2.2, p < 0.001 in Gr I as compared to 10.6% ± 4.6 to 13.5% ± 3.6 in Gr 2, p < 0.001). In 8 patients (45%, 3 pts from Gr 1 and 5 pts from Gr 2) DMSA uptake remain unchanged. The mean 8 hrs UNa excretion after intravenous furosemide was above 80 meq/l and was higher in Gr 2 as compared to Gr 1 respectively (136 ± 37 meq/l) VS 100 ± 36.6 meq/l, P = 0.05). Finally, basal global renal DMSA uptake was decreased in 80% of patients; 22.5 ± 7.5% (NL > 40%), as compared to normal calculated creatinine clearance (CCT 101 ± 26), and measured CCT of 87 ± 30 cc/min (P < 0.001). CONCLUSION: A single furosemide injection increases renal functional mass as reflected by DMSA in 55% of patients with compensated cirrhosis and identify 45% of patients with reduced uptake and who could develop renal impairment under diuretics. Whether or not albumin infusion exerts beneficial effect in those patients with reduced DMSA uptake remains to be determined

    The role of specific biomarkers, as predictors of post-operative complications following flexible ureterorenoscopy (FURS), for the treatment of kidney stones: a single-centre observational clinical pilot-study in 37 patients

    Get PDF
    Abstract: Background: The number of patients diagnosed and subsequently treated for kidney stones is increasing, and as such the number of post-operative complications is likely to increase. At present, little is known about the role of specific biomarkers, following flexible ureterorenoscopy (FURS) for the surgical treatment of kidney stones. The main aim of the study was to evaluate the role of kidney and infection biomarkers, in patients undergoing FURS. Methods: Included were 37 patients (24 males, 13 females), who underwent elective FURS, for the treatment of kidney stones. Venous blood samples were collected from each patient: pre-operatively, and at 30 min, 2 and 4 h post-operatively. Changes to kidney (NGAL, Cystatin-C) and infection (MPO, PCT) biomarkers was quantified by means of ELISA, Biomerieux mini-vidas and Konelab 20 analysers. Results: Four patients developed post-operative complications (3 - UTIs with urinary retention, 1 - urosepsis. NGAL concentration increased significantly following FURS (p = 0.034). Although no significant changes were seen in Cystatin C, MPO and PCT (p ≥ 0.05) some key clinical observation were noted. Limiting factors for this study were the small number of patients recruited and restriction in blood sampling beyond 4 h. Conclusions: Although not confirmative, changes seen to biomarkers such as Cystatin C, NGAL and MPO in our observational clinical pilot-study may warrant further investigation, involving larger cohorts, to fully understand the role of these biomarkers and their potential association with post-operative complications which can develop following FURS

    Glomerular filtration rate and prevalence of chronic kidney disease in Wilms’ tumour survivors

    Get PDF
    Glomerular filtration rate (GFR) was evaluated in 32 Wilms’ tumour survivors (WTs) in a cross-sectional study using 99 Tc-diethylene triamine pentaacetic acid (99 Tc-DTPA) clearance, the Schwartz formula, the new Schwartz equation for chronic kidney disease (CKD), cystatin C serum concentration and the Filler formula. Kidney damage was established by beta-2-microglobulin (B-2-M) and albumin urine excretion, urine sediment and ultrasound examination. Blood pressure was measured. No differences were found between the mean GFR in 99 Tc-DTPA and the new Schwartz equation for CKD (91.8 ± 11.3 vs. 94.3 ± 10.2 ml/min/1.73 m2 [p = 0.55] respectively). No differences were observed between estimated glomerular filtration rate (eGFR) using the Schwartz formula and the Filler formula either (122.3 ± 19.9 vs. 129.8 ± 23.9 ml/min/1.73 m2 [p = 0.28] respectively). Increased urine albumin and B-2-M excretion, which are signs of kidney damage, were found in 7 (22%) and 3 (9.4%) WTs respectively. Ultrasound signs of kidney damage were found in 14 patients (43%). Five patients (15.6%) had more than one sign of kidney damage. Eighteen individuals (56.25%) had CKD stage I (10 with signs of kidney damage; 8 without). Fourteen individuals (43.75%) had CKD stage II (6 with signs of kidney damage; 8 without). The new Schwartz equation for CKD better estimated GFR in comparison to the Schwartz formula and the Filler formula. Furthermore, the WT survivors had signs of kidney damage despite the fact that GFR was not decreased below 90 ml/min/1.73 m2 with 99 Tc- DTPA

    VEGF-B hypertrophy predisposes to transition from diastolic to systolic heart failure in hypertensive rats

    Get PDF
    AIMS: Cardiac energy metabolism is centrally involved in heart failure (HF), although the direction of the metabolic alterations is complex and likely dependent on the particular stage of HF progression. Vascular endothelial growth factor B (VEGF-B) has been shown to modulate metabolic processes and to induce physiological cardiac hypertrophy; thus, it could be cardioprotective in the failing myocardium. This study investigates the role of VEGF-B in cardiac proteomic and metabolic adaptation in HF during aldosterone and high-salt hypertensive challenges. METHODS AND RESULTS: Male rats overexpressing the cardiac-specific VEGF-B transgene (VEGF-B TG) were treated for 3 or 6 weeks with deoxycorticosterone-acetate combined with a high-salt (HS) diet (DOCA + HS) to induce hypertension and cardiac damage. Extensive longitudinal echocardiographic studies of HF progression were conducted, starting at baseline. Sham-treated rats served as controls. To evaluate the metabolic alterations associated with HF, cardiac proteomics by mass spectrometry was performed. Hypertrophic non-treated VEGF-B TG hearts demonstrated high oxygen and adenosine triphosphate (ATP) demand with early onset of diastolic dysfunction. Administration of DOCA + HS to VEGF-B TG rats for 6 weeks amplified the progression from cardiac hypertrophy to HF, with a drastic drop in heart ATP concentration. Dobutamine stress echocardiographic analyses uncovered a significantly impaired systolic reserve. Mechanistically, the hallmark of the failing TG heart was an abnormal energy metabolism with decreased mitochondrial ATP, preceding the attenuated cardiac performance and leading to systolic HF. CONCLUSIONS: This study shows that the VEGF-B TG accelerates metabolic maladaptation which precedes structural cardiomyopathy in experimental hypertension and ultimately leads to systolic HF

    Differential degradation of matrix proteoglycans and edema development in rabbit lung

    No full text
    The specific role of solid extracellular matrix components in opposing development of pulmonary interstitial edema was studied in adult anesthetized rabbits by challenging the lung parenchyma with an intravenous injection of a bolus of collagenase or heparanase. In 10 rabbits, pulmonary interstitial pressure (P-ip) was measured by micropuncture in control and up to 3 h after collagenase or heparanase intravenous injection. With respect to control (P-ip = -9.3 +/- 1.5 cmH(2)O, n = 10), both treatments caused a significant increase of P-ip and of the wet weight-to-dry weight lung ratio. However, while tissue matrix stiffness was maintained after 60 min of collagenase, as indicated by the attainment of a positive Pip peak (P-ip = 4.5 +/- 0.3 cmH(2)O, n = 5), this mechanical response was lost with heparanase (P-ip = -0.6 +/- 1.3 cmH(2)O, n = 5). Biochemical analysis performed on a separate rabbit group (n = 15) showed an increased extraction of uronic acid with both enzymes, indicating a progressive matrix fragmentation. Gel chromatography analysis of the proteoglycan ( PG) families showed that 60 min of both enzymatic treatments left the large-molecular-weight PGs (versican) essentially unaffected. However, the heparan-sulfate PG fraction was significantly cleaved, as indicated by a significant increase of the smaller PG fragments with heparanase, but not with collagenase. Hence, present data suggest that the integrity of the heparan-sulfate PGs is required to maintain the three-dimensional architecture of the pulmonary tissue matrix and in turn to counteract tissue fluid accumulation in situations of increased fluid filtration
    corecore