5 research outputs found

    On the effect of multiple parallel nonlinear absorbers in palliation of torsional response of automotive drivetrain

    Get PDF
    Torsional vibrations transmitted from the engine to the drivetrain system induce a plethora of noise, vibration and harshness (NVH) concerns, such a transmission gear rattle and clutch in-cycle vibration, to name but a few. The main elements of these oscillations are variations in the inertial imbalance and the constituents of combustion power torque, collectively referred to as engine order vibration. To attenuate the effect of these transmitted vibrations and their oscillatory effects in the drive train system, a host of palliative measures are employed in practice, such as clutch pre-dampers, slipping discs, dual mass flywheel and others, all of which operate effectively over a narrow band of frequencies and have various unintended repercussions. These include increased powertrain inertia, installation package space and cost. This paper presents a numerical study of the use of multiple Nonlinear Energy Sinks (NES) as a means of attenuating the torsional oscillations for an extended frequency range and under transient vehicle manoeuvres. Frequency–Energy Plots (FEP) are used to obtain the nonlinear absorber parameters for multiple NES coupled in parallel to the clutch disc of a typical drivetrain configuration. The results obtained show significant reduction in the oscillations of the transmission input shaft, effective over a broad range of response frequencies. It is also noted that the targeted reduction of the acceleration amplitude of the input shaft requires significantly lower NES inertia, compared with the existing palliative measures

    On the dynamics of a nonlinear energy harvester with multiple resonant zones

    Get PDF
    The dynamics of a nonlinear vibration energy harvester for rotating systems is investigated analytically through harmonic balance, as well as by numerical analysis. The electromagnetic harvester is attached to a spinning shaft at constant speed. Magnetic levitation is used as the system nonlinear restoring force for broadening the resonant range of the oscillator. The system is modelled as a Duffing oscillator with linear frequency variation under static, as well as harmonic excitation. Behaviour charts and backbone curves are extracted for the fundamental harmonic response and validated against frequency response curves for selected cases, using direct numerical integration. It is found that variation in stiffness, together with asymmetric forcing, gives rise to a novel structure of multiple resonant zones, incorporating mono-stable and bi-stable dynamics. Contrary to previously considered bi-stable energy harvesters, cross-well oscillations are realized through a transition from single-well potential energy to double-well with forward frequency sweep. Furthermore, in-well_oscillations present a hardening behaviour, unlike the well-known softening in-well response of bi-stable Duffing oscillators. The analysis shows that the proposed system has multiple resonant responses to a frequency sweep, influenced by consecutive interacting backbone curves similar to a multi-modal system. This combined effect of the transition to bi-stable dynamics and the hardening in-well oscillations induces resonant response of the harvester over multiple distinct frequency ranges. Thus, the system exhibits a broadened frequency response, enhancing its energy harvesting potential

    Targeted Energy Transfer and Modal Energy Redistribution in Automotive Drivetrains

    Get PDF
    The new generations of compact high output power-to-weight ratio internal combustion engines generate broadband torsional oscillations, transmitted to lightly damped drivetrain systems. A novel approach to mitigate these untoward vibrations can be the use of nonlinear absorbers. These act as Nonlinear Energy Sinks (NESs). The NES is coupled to the primary (drivetrain) structure, inducing passive irreversible targeted energy transfer (TET) from the drivetrain system to the NES. During this process, the vibration energy is directed from the lower-frequency modes of the structure to the higher ones. Thereafter, vibrations can be either dissipated through structural damping or consumed by the NES. This paper uses a lumped parameter model of an automotive driveline to simulate the effect of TET and the assumed modal energy redistribution. Significant redistribution of vibratory energy is observed through TET. Furthermore, the integrated optimization process highlights the most effective configuration and parametric evaluation for use of NES
    corecore