96 research outputs found

    Impact of 18F-fluoro-deoxy-glucose positron emission tomography (FDG-PET) in recurrent colorectal cancer

    Get PDF
    Purpose: The aim of the study was to evaluate the diagnostic performance, the prognosis factors and the therapeutic impact of 18F-FDG positron emission tomography (FDG-PET) in the detection of recurrent colorectal cancers. Methods: Sixty PET/CT with 18F-FDG and CT were performed in 52 patients, at the Paul Papin cancer center between 2003 and 2005, following suspicion of colorectal cancer relapse. The FDG-PET impact on the clinical management was studied by examination of multidisciplinary concertations results. Survival analysis were realized with a mean follow up of 2.2 years. Results: Recurrence was confirmed for 50 explorations by histologic (n = 32), radiologic (n = 14) or clinical (n = 4) findings. Twenty patients died during the time of the study. On a patient based analysis, FDG-PET sensitivity, specificity and overall accuracy were 90, 90, 90% respectively compared with 74, 50 and 70% for CT. FDG-PET changed the clinical management in 18 cases (30%). A positive FDG-PET signal, more than one hepatic lesion, more than two lymph node lesions detected on FDG-PET and more than two hepatic lesions on CT were characterized as bad prognostic factors for survival. Multivariate analysis showed that the only independent bad prognostic factor was the FDG-PET detection of more than two liver lesions. Conclusion: These results confirmed the important impact of FDG-PET in the clinical management of patients with a suspected recurrence of colorectal cancer

    Quasiprojectile breakup and isospin equilibration at Fermi energies: an indication of longer projectile-target contact times?

    Full text link
    An investigation of the quasiprojectile breakup channel in semiperipheral and peripheral collisions of 58,64^{58,64}Ni+58,64^{58,64}Ni at 32 and 52 MeV/nucleon is presented. Data have been acquired in the first experimental campaign of the INDRA-FAZIA apparatus in GANIL. The effect of isospin diffusion between projectile and target in the two asymmetric reactions has been highlighted by means of the isospin transport ratio technique, exploiting the neutron-to-proton ratio of the quasiprojectile reconstructed from the two breakup fragments. We found evidence that, for the same reaction centrality, a higher degree of relaxation of the initial isospin imbalance is achieved in the breakup channel with respect to the more populated binary output, possibly indicating the indirect selection of specific dynamical features. We have proposed an interpretation based on different average projectile-target contact times related to the two exit channels under investigation, with a longer interaction for the breakup channel. The time information has been extracted from AMD simulations of the studied systems coupled to GEMINI++: the model calculations support the hypothesis hereby presented

    Antiretroviral-naive and -treated HIV-1 patients can harbour more resistant viruses in CSF than in plasma

    Get PDF
    Objectives The neurological disorders in HIV-1-infected patients remain prevalent. The HIV-1 resistance in plasma and CSF was compared in patients with neurological disorders in a multicentre study. Methods Blood and CSF samples were collected at time of neurological disorders for 244 patients. The viral loads were >50 copies/mL in both compartments and bulk genotypic tests were realized. Results On 244 patients, 89 and 155 were antiretroviral (ARV) naive and ARV treated, respectively. In ARV-naive patients, detection of mutations in CSF and not in plasma were reported for the reverse transcriptase (RT) gene in 2/89 patients (2.2%) and for the protease gene in 1/89 patients (1.1%). In ARV-treated patients, 19/152 (12.5%) patients had HIV-1 mutations only in the CSF for the RT gene and 30/151 (19.8%) for the protease gene. Two mutations appeared statistically more prevalent in the CSF than in plasma: M41L (P = 0.0455) and T215Y (P = 0.0455). Conclusions In most cases, resistance mutations were present and similar in both studied compartments. However, in 3.4% of ARV-naive and 8.8% of ARV-treated patients, the virus was more resistant in CSF than in plasma. These results support the need for genotypic resistance testing when lumbar puncture is performe

    The response of reworked aerosols to climate through estimation of inter-particle forces

    Get PDF
    This paper describes the first use of inter-particle force measurement in reworked aerosols to better understand the mechanics of dust deflation and its consequent ecological ramifications. Dust is likely to carry hydrocarbons and micro-organisms including human pathogens and cultured microbes and thereby is a threat to plants, animals and human. Present-day global aerosol emissions are substantially greater than in 1850; however, the projected influx rates are highly disputable. This uncertainty, in part, has roots in the lack of understanding of deflation mechanisms. A growing body of literature shows that whether carbon emission continues to increase, plant transpiration drops and soil water retention enhances, allowing more greenery to grow and less dust to flux. On the other hand, a small but important body of geochemistry literature shows that increasing emission and global temperature leads to extreme climates, decalcification of surface soils containing soluble carbonate polymorphs and hence a greater chance of deflation. The consistency of loosely packed reworked silt provides background data against which the resistance of dust’s bonding components (carbonates and water) can be compared. The use of macro-scale phenomenological approaches to measure dust consistency is trivial. Instead, consistency can be measured in terms of inter-particle stress state. This paper describes a semi-empirical parametrisation of the inter-particle cohesion forces in terms of the balance of contact-level forces at the instant of particle motion. We put forward the hypothesis that the loss of Ca2+-based pedogenic salts is responsible for much of the dust influx and surficial drying pays a less significant role

    Harnessing collective intelligence for the future of learning – a co-constructed research and development agenda

    Get PDF
    Learning, defined as the process of constructing meaning and developing competencies to act on it, is instrumental in helping individuals, communities, and organizations tackle challenges. When these challenges increase in complexity and require domain knowledge from diverse areas of expertise, it becomes difficult for single individuals to address them. In this context, collective intelligence, a capacity of groups of people to act together and solve problems using their collective knowledge, becomes of great importance. Technologies are instrumental both to support and understand learning and collective intelligence, hence the need for innovations in the area of technologies that can support user needs to learn and tackle collective challenges. Use-inspired research is a fitting paradigm that spans applied solutions and scientific explanations of the processes of learning and collective intelligence, and that can improve the technologies that may support them. Although some conceptual and theoretical work explaining and linking learning with collective intelligence is emerging, technological infrastructures as well as methodologies that employ and evidence that support them are nascent. We convened a group of experts to create a middleground and engage with the priorities for use-inspired research. Here we detail directions and methods they put forward as most promising for advancing a scientific agenda around learning and collective intelligence

    The response of reworked aerosols to climate through estimation of inter-particle forces

    Get PDF
    This paper describes the first use of inter-particle force measurement in reworked aerosols to better understand the mechanics of dust deflation and its consequent ecological ramifications. Dust is likely to carry hydrocarbons and micro-organisms including human pathogens and cultured microbes and thereby is a threat to plants, animals and human. Present-day global aerosol emissions are substantially greater than in 1850; however, the projected influx rates are highly disputable. This uncertainty, in part, has roots in the lack of understanding of deflation mechanisms. A growing body of literature shows that whether carbon emission continues to increase, plant transpiration drops and soil water retention enhances, allowing more greenery to grow and less dust to flux. On the other hand, a small but important body of geochemistry literature shows that increasing emission and global temperature leads to extreme climates, decalcification of surface soils containing soluble carbonate polymorphs and hence a greater chance of deflation. The consistency of loosely packed reworked silt provides background data against which the resistance of dust’s bonding components (carbonates and water) can be compared. The use of macro-scale phenomenological approaches to measure dust consistency is trivial. Instead, consistency can be measured in terms of inter-particle stress state. This paper describes a semi-empirical parametrisation of the inter-particle cohesion forces in terms of the balance of contact-level forces at the instant of particle motion. We put forward the hypothesis that the loss of Ca2+-based pedogenic salts is responsible for much of the dust influx and surficial drying pays a less significant role

    Streamer and leader characterization in HFO1234ze(E) gas, in a divergent electric field

    No full text
    Abstract Pre-breakdown phenomena in HFO1234ze-(E) gas, considered as a potential replacement of SF6 for medium voltage insulation, are studied in needle-plane electrode systems versus pressure (0.01 to 0.3 MPa) under positive impulse voltage. Measurements are also carried out in air and SF6 in the same conditions for comparison. At the lowest pressure in HFO, the propagation of fast streamers is observed. Above 0.03 MPa, breakdown is the consequence of the propagation of stepped leaders, with shapes and velocities nearly identical to those observed in SF6. Several leader features (minimum inception voltage, propagation length) show that leader formation and propagation is easier in HFO compared to SF6. In turn, this allow explaining why breakdown voltages in HFO are slightly lower than in SF6

    Muon diffusion in niobium in the presence of traps

    No full text
    The first CERN experiments on Nb metal showed a behaviour of muon depolarisation rate Lambda (T) similar to that in Cu, but with indications of some structure in the 'flat' low-T region. Later measurements on more purified samples, containing less than 100 ppm substitutional impurities and varying concentrations of interstitial nitrogen, showed a very strong dependence of the depolarization rate on the nitrogen content. In the region above T=20K, the Lambda -values could be interpreted in terms of a trapping of muons near nitrogen sites and the subsequent release from these traps. The diffusion of the muons from interstitial sites in the 'pure' Nb lattice was then supposed to start above 15K. Some unsolved questions remained, however; one being the absolute value of Lambda (or the Gaussian parameter sigma ) at maximum (for about 14K); and another, the tendency of a decrease of Lambda when going below 14K. It was decided to 1) dope the existing Nb metal with a substitutional impurity, and 2) try to obtain the purest possible Nb samples for studies of the low-temperature region. (6 refs)
    corecore