524 research outputs found

    Hydrodynamic Trapping of Swimming Bacteria by Convex Walls

    Get PDF
    Swimming bacteria display a remarkable tendency to move along flat surfaces for prolonged times. This behavior may have a biological importance but can also be exploited by using microfabricated structures to manipulate bacteria. The main physical mechanism behind the surface entrapment of swimming bacteria is, however, still an open question. By studying the swimming motion of Escherichia coli cells near microfabricated pillars of variable size, we show that cell entrapment is also present for convex walls of sufficiently low curvature. Entrapment is, however, markedly reduced below a characteristic radius. Using a simple hydrodynamic model, we predict that trapped cells swim at a finite angle with the wall and a precise relation exists between the swimming angle at a flat wall and the critical radius of curvature for entrapment. Both predictions are quantitatively verified by experimental data. Our results demonstrate that the main mechanism for wall entrapment is hydrodynamic in nature and show the possibility of inhibiting cell adhesion, and thus biofilm formation, using convex features of appropriate curvature

    Safe Estimation of Minimum Thickness of Circular Masonry Arches Considering Stereotomy and Different Rotational Failure Modes

    Get PDF
    Limit state analysis of masonry arches sets to assess the safety of the structure by determining the minimum thickness that just contains a thrust line. Based on the Heymanian assumptions regarding material qualities and the equilibrium approach to the static theorem it has been explicitly proven for semi-circular arches that both the thrust line and the resulting minimum thickness value is subject to stereotomy (brick or stone laying pattern), while present study demonstrates, that the latter statement holds for pointed-circular arches as well. This is not straightforward, since the number- and arrangement of the hinges at limit state vary subject to the geometry in case of pointedcircular arches, resulting a more complex problem. It is also explicitly shown, that stereotomy might also affect the corresponding (rotational) failure mode (for certain arch geometries). Stereotomy of an existing structure is not always known, hence it is relevant to search for a stereotomy related bounding value of minimum thickness for each of the various failure modes. The potential of the envelope of resultants as a thrust line (resulting from vertical stereotomy) leading to bounding value minimum thicknesses is discussed: as shown elsewhere it bounds the family of thrust lines, hence leads to an upper bound value of minimum thickness in case of semi-circular arches. It is demonstrated however, that this cannot be generalized for other rotational failure modes which occur for circular-pointed arches. The envelope of resultants does not necessarily lead to a bounding value of minimum thickness, and even if it does, it can be either an upper or a lower bound. However, it is found that the range of minimum thickness values is bounded in all possible failure mode types. The necessary conditions are provided for each

    Microfluidic study of the chemotactic response of Escherichia coli to amino acids, signaling molecules and secondary metabolites

    Get PDF
    Quorum sensing and chemotaxis both affect bacterial behavior on the population level. Chemotaxis shapes the spatial distribution of cells, while quorum sensing realizes a cell-density dependent gene regulation. An interesting question is if these mechanisms interact on some level: Does quorum sensing, a density dependent process, affect cell density itself via chemotaxis? Since quorum sensing often spans across species, such a feedback mechanism may also exist between multiple species. We constructed a microfluidic platform to study these questions. A flow-free, stable linear chemical gradient is formed in our device within a few minutes that makes it suitable for sensitive testing of chemoeffectors: we showed that the amino acid lysine is a weak chemoattractant for Escherichia coli, while arginine is neutral. We studied the effect of quorum sensing signal molecules of Pseudomonas aeruginosa on E. coli chemotaxis. Our results show that N-(3-oxododecanoyl)-homoserine lactone (oxo-C12-HSL) and N-(butryl)-homoserine lactone (C4-HSL) are attractants. Furthermore, we tested the chemoeffector potential of pyocyanin and pyoverdine, secondary metabolites under a quorum sensing control. Pyocyanin is proved to be a weak attractant while pyoverdine are repellent. We demonstrated the usability of the device in co-culturing experiments, where we showed that various factors released by P. aeruginosa affect the dynamic spatial rearrangement of a neighboring E. coli population, while surface adhesion of the cells is also modulated. © 2015 AIP Publishing LLC

    The rise of fully turbulent flow

    Full text link
    Over a century of research into the origin of turbulence in wallbounded shear flows has resulted in a puzzling picture in which turbulence appears in a variety of different states competing with laminar background flow. At slightly higher speeds the situation changes distinctly and the entire flow is turbulent. Neither the origin of the different states encountered during transition, nor their front dynamics, let alone the transformation to full turbulence could be explained to date. Combining experiments, theory and computer simulations here we uncover the bifurcation scenario organising the route to fully turbulent pipe flow and explain the front dynamics of the different states encountered in the process. Key to resolving this problem is the interpretation of the flow as a bistable system with nonlinear propagation (advection) of turbulent fronts. These findings bridge the gap between our understanding of the onset of turbulence and fully turbulent flows.Comment: 31 pages, 9 figure

    Objective and Subjective Components of the First-Night Effect in Young Nightmare Sufferers and Healthy Participants

    Get PDF
    The first-night effect—marked differences between the first- and the second-night sleep spent in a laboratory—is a widely known phenomenon that accounts for the common practice of excluding the first-night sleep from any polysomnographic analysis. The extent to which the first-night effect is present in a participant, as well as its duration (1 or more nights), might have diagnostic value and should account for different protocols used for distinct patient groups. This study investigated the first-night effect on nightmare sufferers (NM; N D 12) and healthy controls .N D 15/ using both objective (2-night-long polysomnography) and subjective (Groningen Sleep Quality Scale for the 2 nights spent in the laboratory and 1 regular night spent at home) methods. Differences were found in both the objective (sleep efficiency, wakefulness after sleep onset, sleep latency, Stage-1 duration, Stage-2 duration, slow-wave sleep duration, and REM duration) and subjective (self-rating) variables between the 2 nights and the 2 groups, with a more pronounced first-night effect in the case of the NM group. Furthermore, subjective sleep quality was strongly related to polysomnographic variables and did not differ among 1 regular night spent at home and the second night spent in the laboratory. The importance of these results is discussed from a diagnostic point of view

    Superconducting phase in the layered dichalcogenide 1T-TaS_{2} upon inhibition of the metal-insulator transition

    Get PDF
    When a Mott metal-insulator transition is inhibited by a small amount of disorder in the layered dichalcogenide 1T-TaS2, an inhomogeneous superconducting state arises below T=2.1 K and coexists with a nearly commensurate charge-density wave. By angle-resolved photoelectron spectroscopy, we show that it emerges from a bad metal state with strongly damped quasiparticles. Superconductivity is almost entirely suppressed by an external magnetic field of 0.1 T

    Oscillatory surface rheotaxis of swimming E. coli bacteria

    Full text link
    Bacterial contamination of biological conducts, catheters or water resources is a major threat to public health and can be amplified by the ability of bacteria to swim upstream. The mechanisms of this rheotaxis, the reorientation with respect to flow gradients, often in complex and confined environments, are still poorly understood. Here, we follow individual E. coli bacteria swimming at surfaces under shear flow with two complementary experimental assays, based on 3D Lagrangian tracking and fluorescent flagellar labelling and we develop a theoretical model for their rheotactic motion. Three transitions are identified with increasing shear rate: Above a first critical shear rate, bacteria shift to swimming upstream. After a second threshold, we report the discovery of an oscillatory rheotaxis. Beyond a third transition, we further observe coexistence of rheotaxis along the positive and negative vorticity directions. A full theoretical analysis explains these regimes and predicts the corresponding critical shear rates. The predicted transitions as well as the oscillation dynamics are in good agreement with experimental observations. Our results shed new light on bacterial transport and reveal new strategies for contamination prevention.Comment: 12 pages, 5 figure

    Comprehensive DNA Methylation Analysis Reveals a Common Ten-Gene Methylation Signature in Colorectal Adenomas and Carcinomas

    Get PDF
    Microarray analysis of promoter hypermethylation provides insight into the role and extent of DNA methylation in the development of colorectal cancer (CRC) and may be co-monitored with the appearance of driver mutations. Colonic biopsy samples were obtained endoscopically from 10 normal, 23 adenoma (17 low-grade (LGD) and 6 high-grade dysplasia (HGD)), and 8 ulcerative colitis (UC) patients (4 active and 4 inactive). CRC samples were obtained from 24 patients (17 primary, 7 metastatic (MCRC)), 7 of them with synchronous LGD. Field effects were analyzed in tissues 1 cm (n = 5) and 10 cm (n = 5) from the margin of CRC. Tissue materials were studied for DNA methylation status using a 96 gene panel and for KRAS and BRAF mutations. Expression levels were assayed using whole genomic mRNA arrays. SFRP1 was further examined by immunohistochemistry. HT29 cells were treated with 5-aza-2' deoxycytidine to analyze the reversal possibility of DNA methylation. More than 85% of tumor samples showed hypermethylation in 10 genes (SFRP1, SST, BNC1, MAL, SLIT2, SFRP2, SLIT3, ALDH1A3, TMEFF2, WIF1), whereas the frequency of examined mutations were below 25%. These genes distinguished precancerous and cancerous lesions from inflamed and healthy tissue. The mRNA alterations that might be caused by systematic methylation could be partly reversed by demethylation treatment. Systematic changes in methylation patterns were observed early in CRC carcinogenesis, occuring in precursor lesions and CRC. Thus we conclude that DNA hypermethylation is an early and systematic event in colorectal carcinogenesis, and it could be potentially reversed by systematic demethylation therapy, but it would need more in vitro and in vivo experiments to support this theory
    corecore