142 research outputs found

    High-speed data transfer with FPGAs and QSFP+ modules

    Full text link
    We present test results and characterization of a data transmission system based on a last generation FPGA and a commercial QSFP+ (Quad Small Form Pluggable +) module. QSFP+ standard defines a hot-pluggable transceiver available in copper or optical cable assemblies for an aggregated bandwidth of up to 40 Gbps. We implemented a complete testbench based on a commercial development card mounting an Altera Stratix IV FPGA with 24 serial transceivers at 8.5 Gbps, together with a custom mezzanine hosting three QSFP+ modules. We present test results and signal integrity measurements up to an aggregated bandwidth of 12 Gbps.Comment: 5 pages, 3 figures, Published on JINST Journal of Instrumentation proceedings of Topical Workshop on Electronics for Particle Physics 2010, 20-24 September 2010, Aachen, Germany(R Ammendola et al 2010 JINST 5 C12019

    NaNet: a Low-Latency, Real-Time, Multi-Standard Network Interface Card with GPUDirect Features

    Full text link
    While the GPGPU paradigm is widely recognized as an effective approach to high performance computing, its adoption in low-latency, real-time systems is still in its early stages. Although GPUs typically show deterministic behaviour in terms of latency in executing computational kernels as soon as data is available in their internal memories, assessment of real-time features of a standard GPGPU system needs careful characterization of all subsystems along data stream path. The networking subsystem results in being the most critical one in terms of absolute value and fluctuations of its response latency. Our envisioned solution to this issue is NaNet, a FPGA-based PCIe Network Interface Card (NIC) design featuring a configurable and extensible set of network channels with direct access through GPUDirect to NVIDIA Fermi/Kepler GPU memories. NaNet design currently supports both standard - GbE (1000BASE-T) and 10GbE (10Base-R) - and custom - 34~Gbps APElink and 2.5~Gbps deterministic latency KM3link - channels, but its modularity allows for a straightforward inclusion of other link technologies. To avoid host OS intervention on data stream and remove a possible source of jitter, the design includes a network/transport layer offload module with cycle-accurate, upper-bound latency, supporting UDP, KM3link Time Division Multiplexing and APElink protocols. After NaNet architecture description and its latency/bandwidth characterization for all supported links, two real world use cases will be presented: the GPU-based low level trigger for the RICH detector in the NA62 experiment at CERN and the on-/off-shore data link for KM3 underwater neutrino telescope

    Quark-hadron duality in a relativistic, confining model

    Get PDF
    Quark-hadron duality is an interesting and potentially very useful phenomenon, as it relates the properly averaged hadronic data to a perturbative QCD result in some kinematic regions. While duality is well established experimentally, our current theoretical understanding is still incomplete. We employ a simple model to qualitatively reproduce all the features of Bloom-Gilman duality as seen in electron scattering. In particular, we address the role of relativity, give an explicit analytic proof of the equality of the hadronic and partonic scaling curves, and show how the transition from coherent to incoherent scattering takes place.Comment: This paper is dedicated to the memory of our collaborator Nathan Isgur. (34 pages, 13 figures

    GPU-based Real-time Triggering in the NA62 Experiment

    Full text link
    Over the last few years the GPGPU (General-Purpose computing on Graphics Processing Units) paradigm represented a remarkable development in the world of computing. Computing for High-Energy Physics is no exception: several works have demonstrated the effectiveness of the integration of GPU-based systems in high level trigger of different experiments. On the other hand the use of GPUs in the low level trigger systems, characterized by stringent real-time constraints, such as tight time budget and high throughput, poses several challenges. In this paper we focus on the low level trigger in the CERN NA62 experiment, investigating the use of real-time computing on GPUs in this synchronous system. Our approach aimed at harvesting the GPU computing power to build in real-time refined physics-related trigger primitives for the RICH detector, as the the knowledge of Cerenkov rings parameters allows to build stringent conditions for data selection at trigger level. Latencies of all components of the trigger chain have been analyzed, pointing out that networking is the most critical one. To keep the latency of data transfer task under control, we devised NaNet, an FPGA-based PCIe Network Interface Card (NIC) with GPUDirect capabilities. For the processing task, we developed specific multiple ring trigger algorithms to leverage the parallel architecture of GPUs and increase the processing throughput to keep up with the high event rate. Results obtained during the first months of 2016 NA62 run are presented and discussed

    Vortex Lattice Structures of a Bose-Einstein Condensate in a Rotating Lattice Potential

    Full text link
    We study vortex lattice structures of a trapped Bose-Einstein condensate in a rotating lattice potential by numerically solving the time-dependent Gross-Pitaevskii equation. By rotating the lattice potential, we observe the transition from the Abrikosov vortex lattice to the pinned lattice. We investigate the transition of the vortex lattice structure by changing conditions such as angular velocity, intensity, and lattice constant of the rotating lattice potential.Comment: 6 pages, 8 figures, submitted to Quantum Fluids and Solids Conference (QFS 2006

    Leading and higher twists in the proton polarized structure function at large Bjorken x

    Get PDF
    A phenomenological parameterization of the proton polarized structure function has been developed for x > 0.02 using deep inelastic data up to ~ 50 (GeV/c)**2 as well as available experimental results on both photo- and electro-production of proton resonances. According to the new parameterization the generalized Drell-Hearn-Gerasimov sum rule is predicted to have a zero-crossing point at Q**2 = 0.16 +/- 0.04 (GeV/c)**2. Then, low-order polarized Nachtmann moments have been estimated and their Q**2-behavior has been investigated in terms of leading and higher twists for Q**2 > 1 (GeV/c)**2. The leading twist has been treated at NLO in the strong coupling constant and the effects of higher orders of the perturbative series have been estimated using soft-gluon resummation techniques. In case of the first moment higher-twist effects are found to be quite small for Q**2 > 1 (GeV/c)**2, and the singlet axial charge has been determined to be a0[10 (GeV/c)**2] = 0.16 +/- 0.09. In case of higher order moments, which are sensitive to the large-x region, higher-twist effects are significantly reduced by the introduction of soft gluon contributions, but they are still relevant at Q**2 ~ few (GeV/c)**2 at variance with the case of the unpolarized transverse structure function of the proton. Our finding suggests that spin-dependent correlations among partons may have more impact than spin-independent ones. As a byproduct, it is also shown that the Bloom-Gilman local duality is strongly violated in the region of polarized electroproduction of the Delta(1232) resonance.Comment: revised version to appear in Phys. Rev. D; extended discussion on the generalized DHG sum rul

    APEnet+: high bandwidth 3D torus direct network for petaflops scale commodity clusters

    Full text link
    We describe herein the APElink+ board, a PCIe interconnect adapter featuring the latest advances in wire speed and interface technology plus hardware support for a RDMA programming model and experimental acceleration of GPU networking; this design allows us to build a low latency, high bandwidth PC cluster, the APEnet+ network, the new generation of our cost-effective, tens-of-thousands-scalable cluster network architecture. Some test results and characterization of data transmission of a complete testbench, based on a commercial development card mounting an Altera FPGA, are provided.Comment: 6 pages, 7 figures, proceeding of CHEP 2010, Taiwan, October 18-2

    Neutron structure function and inclusive DIS from H-3 and He-3 at large Bjorken-x

    Get PDF
    A detailed study of inclusive deep inelastic scattering (DIS) from mirror A = 3 nuclei at large values of the Bjorken variable x is presented. The main purpose is to estimate the theoretical uncertainties on the extraction of the neutron DIS structure function from such nuclear measurements. On one hand, within models in which no modification of the bound nucleon structure functions is taken into account, we have investigated the possible uncertainties arising from: i) charge symmetry breaking terms in the nucleon-nucleon interaction, ii) finite Q**2 effects neglected in the Bjorken limit, iii) the role of different prescriptions for the nucleon Spectral Function normalization providing baryon number conservation, and iv) the differences between the virtual nucleon and light cone formalisms. Although these effects have been not yet considered in existing analyses, our conclusion is that all these effects cancel at the level of ~ 1% for x < 0.75 in overall agreement with previous findings. On the other hand we have considered several models in which the modification of the bound nucleon structure functions is accounted for to describe the EMC effect in DIS scattering from nuclei. It turns out that within these models the cancellation of nuclear effects is expected to occur only at a level of ~ 3%, leading to an accuracy of ~ 12 % in the extraction of the neutron to proton structure function ratio at x ~ 0.7 -0.8$. Another consequence of considering a broad range of models of the EMC effect is that the previously suggested iteration procedure does not improve the accuracy of the extraction of the neutron to proton structure function ratio.Comment: revised version to appear in Phys. Rev. C; main modifications in Section 4; no change in the conclusion

    Dynamic Scaling in One-Dimensional Cluster-Cluster Aggregation

    Get PDF
    We study the dynamic scaling properties of an aggregation model in which particles obey both diffusive and driven ballistic dynamics. The diffusion constant and the velocity of a cluster of size ss follow D(s)sγD(s) \sim s^\gamma and v(s)sδv(s) \sim s^\delta, respectively. We determine the dynamic exponent and the phase diagram for the asymptotic aggregation behavior in one dimension in the presence of mixed dynamics. The asymptotic dynamics is dominated by the process that has the largest dynamic exponent with a crossover that is located at δ=γ1\delta = \gamma - 1. The cluster size distributions scale similarly in all cases but the scaling function depends continuously on γ\gamma and δ\delta. For the purely diffusive case the scaling function has a transition from exponential to algebraic behavior at small argument values as γ\gamma changes sign whereas in the drift dominated case the scaling function decays always exponentially.Comment: 6 pages, 6 figures, RevTeX, submitted to Phys. Rev.

    Progress report on the online processing upgrade at the NA62 experiment

    Get PDF
    A new FPGA-based low-level trigger processor has been installed at the NA62 experiment. It is intended to extend the features of its predecessor due to a faster interconnection technology and additional logic resources available on the new platform. With the aim of improving trigger selectivity and exploring new architectures for complex trigger computation, a GPU system has been developed and a neural network on FPGA is in progress. They both process data streams from the ring imaging Cherenkov detector of the experiment to extract in real time high level features for the trigger logic. Description of the systems, latest developments and design flows are reported in this paper
    corecore