6,851 research outputs found
Ab initio modeling of the energy landscape for screw dislocations in body-centered cubic high-entropy alloys
In traditional body-centered cubic (bcc) metals, the core properties of screw
dislocations play a critical role in plastic deformation at low temperatures.
Recently, much attention has been focused on refractory high-entropy alloys
(RHEAs), which also possess bcc crystal structures. However, unlike
face-centered cubic high-entropy alloys (HEAs), there have been far fewer
investigations on bcc HEAs, specifically on the possible effects of chemical
short-range order (SRO) in these multiple principal element alloys on
dislocation mobility. Here, using density functional theory, we investigate the
distribution of dislocation core properties in MoNbTaW RHEAs alloys, and how
they are influenced by SRO. The average values of the core energies in the RHEA
are found to be larger than those in the corresponding pure constituent bcc
metals, and are relatively insensitive to the degree of SRO. However, the
presence of SRO is shown to have a large effect on narrowing the distribution
of dislocation core energies and decreasing the spatial heterogeneity of
dislocation core energies in the RHEA. It is argued that the consequences for
the mechanical behavior of HEAs is a change in the energy landscape of the
dislocations which would likely heterogeneously inhibit their motion
Scalar-tensor analysis of an exponential Lagrangian for the Gravitational Field
Within the scheme of modified gravity, an exponential Lagrangian density will
be considered, and the corresponding scalar-tensor description will be
addressed for both positive and negative values of the cosmological constant.
For negative values of the cosmological term, the potential of the scalar field
exhibits a minimum, around which scalar-field equations can be linearized. The
study of the deSitter regime shows that a comparison with the modified-gravity
description is possible in an off-shell region, i.e., in a region where the
classical equivalence between the two formulations is not fulfilled.
Furthermore, despite the negative cosmological constant, an accelerating
deSitter phase is predicted in the region where the series expansion of the
exponential term does not hold. For positive values of the cosmological
constant, the quantum regime is analyzed within the framework of Loop Quantum
Cosmology.Comment: 8 pages, 2 figures, to appear in the proceedings of'' 4th
Italian-Sino Workshop on Relativistic Astrophysics'', AIP Conference Serie
Colossal infrared and terahertz magneto-optical activity in a two-dimensional Dirac material
When two-dimensional electron gases (2DEGs) are exposed to magnetic field,
they resonantly absorb electromagnetic radiation via electronic transitions
between Landau levels (LLs). In 2DEGs with a Dirac spectrum, such as graphene,
theory predicts an exceptionally high infrared magneto-absorption, even at zero
doping. However, the measured LL magneto-optical effects in graphene have been
much weaker than expected because of imperfections in the samples available so
far for such experiments. Here we measure magneto-transmission and Faraday
rotation in high-mobility encapsulated monolayer graphene using a custom
designed setup for magneto-infrared microspectroscopy. Our results show a
strongly enhanced magneto-optical activity in the infrared and terahertz ranges
characterized by a maximum allowed (50%) absorption of light, a 100% magnetic
circular dichroism as well as a record high Faraday rotation. Considering that
sizeable effects have been already observed at routinely achievable magnetic
fields, our findings demonstrate a new potential of magnetic tuning in 2D Dirac
materials for long-wavelength optoelectronics and plasmonics.Comment: 14 pages, 4 figure
Recommended from our members
HIV transmission networks among transgender women in Los Angeles County, CA, USA: a phylogenetic analysis of surveillance data.
BackgroundTransgender women are among the groups at highest risk for HIV infection, with a prevalence of 27·7% in the USA; and despite this known high risk, undiagnosed infection is common in this population. We set out to identify transgender women and their partners in a molecular transmission network to prioritise public health activities.MethodsSince 2006, HIV protease and reverse transcriptase gene (pol) sequences from drug resistance testing have been reported to the Los Angeles County Department of Public Health and linked to demographic data, gender, and HIV transmission risk factor data for each case in the enhanced HIV/AIDS Reporting System. We reconstructed a molecular transmission network by use of HIV-TRAnsmission Cluster Engine (with a pairwise genetic distance threshold of 0·015 substitutions per site) from the earliest pol sequences from 22 398 unique individuals, including 412 (2%) self-identified transgender women. We examined the possible predictors of clustering with multivariate logistic regression. We characterised the genetically linked partners of transgender women and calculated assortativity (the tendency for people to link to other people with the same attributes) for each transmission risk group.Findings8133 (36·3%) of 22 398 individuals clustered in the network across 1722 molecular transmission clusters. Transgender women who indicated a sexual risk factor clustered at the highest frequency in the network, with 147 (43%) of 345 being linked to at least one other person (adjusted odds ratio [aOR] 2·0, p=0·0002). Transgender women were assortative in the network (assortativity 0·06, p<0·001), indicating that they tended to link to other transgender women. Transgender women were more likely than expected to link to other transgender women (OR 4·65, p<0·001) and cisgender men who did not identify as men who have sex with men (MSM; OR 1·53, p<0·001). Transgender women were less likely than expected to link to MSM (OR 0·75, p<0·001), despite the high prevalence of HIV among MSM. Transgender women were distributed across 126 clusters, and cisgender individuals linked to one transgender woman were 9·2 times more likely to link to a second transgender woman than other individuals in the surveillance database. Reconstruction of the transmission network is limited by sample availability, but sequences were available for more than 40% of diagnoses.InterpretationClustering of transgender women and the observed tendency for linkage with cisgender men who did not identify as MSM, shows the potential to use molecular epidemiology both to identify clusters that are likely to include undiagnosed transgender women with HIV and to improve the targeting of public health prevention and treatment services to transgender women.FundingCalifornia HIV and AIDS Research Program and National Institutes of Health-National Institute of Allergy and Infectious Diseases
Non-Markovian reduced dynamics and entanglement evolution of two coupled spins in a quantum spin environment
The exact quantum dynamics of the reduced density matrix of two coupled spin
qubits in a quantum Heisenberg XY spin star environment in the thermodynamic
limit at arbitrarily finite temperatures is obtained using a novel operator
technique. In this approach, the transformed Hamiltonian becomes effectively
Jaynes-Cumming like and thus the analysis is also relevant to cavity quantum
electrodynamics. This special operator technique is mathematically simple and
physically clear, and allows us to treat systems and environments that could
all be strongly coupled mutually and internally. To study their entanglement
evolution, the concurrence of the reduced density matrix of the two coupled
central spins is also obtained exactly. It is shown that the dynamics of the
entanglement depends on the initial state of the system and the coupling
strength between the two coupled central spins, the thermal temperature of the
spin environment and the interaction between the constituents of the spin
environment. We also investigate the effect of detuning which in our model can
be controlled by the strength of a locally applied external magnetic field. It
is found that the detuning has a significant effect on the entanglement
generation between the two spin qubits.Comment: 9 pages (two-coulumn), 6 figures. To appear in Phys. Rev.
Cross-Kerr nonlinearity between continuous-mode coherent states and single photons
Weak cross-Kerr nonlinearities between single photons and coherent states are
the basis for many applications in quantum information processing. These
nonlinearities have so far mainly been discussed in terms of highly idealized
single-mode models. We develop a general theory of the interaction between
continuous-mode photonic pulses and apply it to the case of a single photon
interacting with a coherent state. We quantitatively study the validity of the
usual single-mode approximation using the concepts of fidelity and conditional
phase. We show that high fidelities, non-zero conditional phases and high
photon numbers are compatible, under conditions where the pulses fully pass
through each other and where unwanted transverse-mode effects are suppressed.Comment: 8 pages, 2 figures, more general results in section V
Anomalous quantum confined Stark effects in stacked InAs/GaAs self-assembled quantum dots
Vertically stacked and coupled InAs/GaAs self-assembled quantum dots (SADs)
are predicted to exhibit a strong non-parabolic dependence of the interband
transition energy on the electric field, which is not encountered in single SAD
structures nor in other types of quantum structures. Our study based on an
eight-band strain-dependent Hamiltonian indicates that
this anomalous quantum confined Stark effect is caused by the three-dimensional
strain field distribution which influences drastically the hole states in the
stacked SAD structures.Comment: 4 pages, 4 figure
- …