11 research outputs found

    Weight and mechanical performance optimization of blended composite wing panels using lamination parameters

    Get PDF
    In this paper, a lamination parameter-based approach to weight optimization of composite aircraft wing structures is addressed. It is a bi-level procedure where at the top level lamination parameters and numbers of plies of the pre-defined angles (0, 90, 45 and −45°) are used as design variables, the material volume is treated as an objective function to be minimized subject to the buckling, strength and ply percentage constraints. At the bottom level the optimum stacking sequence is obtained subject to the requirements on blending and preservation of mechanical properties. To ensure composite blending, a multi-stage optimization is performed by a permutation genetic algorithm aiming at matching the lamination parameters passed from the top level optimization as well as satisfying the layup rules. Two new additional criteria, the 90° ply angle jump index and the stack homogeneity index, are introduced to control the uniformity of the three ply angles (0, 90, 45 and −45) spread throughout the stack as well as improve the stack quality and mechanical performance by encouraging 45° angle change between neighbouring groups of plies. The results of the application of this approach are compared to published results to demonstrate the potential of the developed technique

    Multilevel design optimization of composite structures with blended laminates

    No full text
    This research work deals with the design and optimization of a large composite structure. In design of large structural systems, it is customary to divide the problem into many smaller independent/semi-independent local design problems. The use of composite necessitates the inclusion of ply angles as design variables. These design variables are discrete in nature because of manufacturing constraint, which directly affect the lay up cost. The multilevel approach results into a nonblended solution with no continuity of laminate layups across the panels. In this work, we develop a global local design methodology to design blended composite laminates across the whole structural system. The blending constraint is imposed via a guide based approach within the genetic algorithm optimization scheme. In an effort to include the postbuckling constraint into the multilevel design optimization of large composite structure, an alternative cheap methodology for predicting load paths in postbuckled structure is presented.Aerospace Engineerin

    Thickness filters for gradient based multi-material and thickness optimization of laminated composite structures

    No full text
    This paper presents a new gradient based method for performing discrete material and thickness optimization of laminated composite structures. The novelty in the new method lies in the application of so-called casting constraints, or thickness filters in this context, to control the thickness variation throughout the laminate. The filters replace the layerwise density variables with a single continuous through-the-thickness design variable. Consequently, the filters eliminate the need for having explicit constraints for preventing intermediate void through the thickness of the laminate. Therefore, the filters reduce both the number of constraints and design variables in the optimization problem. Based upon a continuous approximation of a unit step function, the thickness filters are capable of projecting discrete 0/1 values to the underlying layerwise or ”physical” density variables which govern the presence of material in each layer through the thickness of the laminate. Combined with an in-plane density filter, the method enables manufacturers to control the length scale of the geometry while obtaining near discrete designs. Together with the applied manufacturing constraints it is now possible for manufacturers to steer the design towards a higher level of manufacturability. The method is demonstrated for mass minimization with displacement and manufacturing constraints. The results show that the method indeed is capable of obtaining near discrete designs which obey the governing constraints.</p

    DMTO – a method for Discrete Material and Thickness Optimization of laminated composite structures

    No full text
    This paper presents a gradient based topology optimization method for Discrete Material and Thickness Optimization of laminated composite structures, labelled the DMTOmethod. The capabilities of the proposed method are demonstrated on mass minimization, subject to constraints on the structural criteria; buckling load factors, eigenfrequencies, and limited displacements. Furthermore, common design guidelines or rules, referred to as manufacturing constraints, are included explicitly in the optimization problem as series of linear inequalities. The material selection and thickness variation are optimized simultaneously through interpolation functions with penalization. Numerical results for several parameterizations of a finite element model of a generic main spar from a wind turbine blade arepresented. The different parameterizations represent different levels of complexity with respect to manufacturability. The results will thus give insight into the relation between potential weight saving and design complexity. The results show that the DMTO method is capable of solving the problems robustly with only few intermediate valued design variables.This paper presents a gradient based topology optimization method for Discrete Material and Thickness Optimization of laminated composite structures, labelled the DMTOmethod. The capabilities of the proposed method are demonstrated on mass minimization, subject to constraints on the structural criteria; buckling load factors, eigenfrequencies, and limited displacements. Furthermore, common design guidelines or rules, referred to as manufacturing constraints, are included explicitly in the optimization problem as series of linear inequalities. The material selection and thickness variation are optimized simultaneously through interpolation functions with penalization. Numerical results for several parameterizations of a finite element model of a generic main spar from a wind turbine blade arepresented. The different parameterizations represent different levels of complexity with respect to manufacturability. The results will thus give insight into the relation between potential weight saving and design complexity. The results show that the DMTO method is capable of solving the problems robustly with only few intermediate valued design variables.<br/
    corecore