250 research outputs found

    Grain size reduction strategies on Eurofer

    Get PDF
    One of the options currently taken into account for the realization of the first DEMO reactor is the "water-cooled blanket". This option implies a minimum irradiation temperature for the blanket material in the range of 280–350 °C. In addition to the DBTT (Ductile to Brittle Transition Temperature) shift due to the DPA (displacement per atom) damage under irradiation, also the issue of the increased embrittlement due to He production must be taken into account. This issue appears even more detrimental and less manageable because the DBBT shift due to the Helium production does not saturate with the dose, as it results from previous works reported in literature. The experimental results and the difference in behaviour between ODS (Oxide Dispersion Strengthened Steels) RAFM (Reduced Activation Ferritic Martensitic) and other FM (Ferritic Martensitic) alloys (EM10, P91) showed that it is possible to improve the resistance to He embrittlement by both intra-granular precipitation of Y-Ti oxides and by decreasing the grain size at the same time. Nevertheless, anyway, the multiplication of the grain boundaries increases the dilution of He on grain surface, delaying the formation of He bubbles on grain boundaries and, therefore, the susceptibility to the He embrittlement. Several grain size reduction strategies have then been investigated on EUROFER both at the austenitization stage, on the PAGS (Prior Austenite Grain Size), and at the tempering stage, on the tempered martensite. The microstructural observations have been carried out by means of SEM (Scanning Electron Microscopy). Also the effect of grain size reduction on the toughness of the material will be taken into account; The DBTTs resulting from impact tests on KLST specimens will be shown. The outcomes of the microstructural observations, as well as the preliminary mechanical characterization (impact tests) will be discussed in this paper. Keywords: EUROFER 97, RAFM steels, Microstructure, Multiple normalization, Asymmetric rolling, Recrystallization, KLS

    Elucidating the photosynthetic responses in chlorophyll-deficient soybean (Glycine max, L.) leaf

    Get PDF
    Chlorophyll (Chl)-deficient plants can potentially increase global surface albedo of mono-cropping systems, and simultaneously maintain a similar photosynthetic efficiency by increasing light canopy penetration and thus lowering investment in pigments. However, some previous studies have shown that pale mutants might reduce productivity in field conditions. Such lower yields were suspected to be due to loss of photosynthetic efficiency at leaf level during light fluctuations as a consequence of reduced capacity and slower relaxation of non-photochemical quenching (NPQ) of Chl fluorescence. In this paper, we tested this hypothesis by comparing, CO2 assimilation (A), photosystem II (PSII) efficiency (ΦPSII), photochemical quenching and NPQ, electron transport rate (ETR) and fluorescence yield (Fyield) in a green soybean (Glycine max L.) cultivar (Eiko) and in a Chl-deficient (MinnGold) mutant under dynamically fluctuating light conditions. MinnGold had significantly slower induction of ETR and lower A and ETR than Eiko, but there was little difference in ΦPSII between the two genotypes, suggesting that the lower photosynthesis of MinnGold was mainly due to lower light energy absorption by a Chl-deficient leaf. The NPQ capacity was also smaller in MinnGold than in Eiko. As for the kinetics of the rapidly inducible component of NPQ, MinnGold showed slower induction, not relaxation, than Eiko. The combination of the effect of Chl-deficiency on lower photosynthesis, NPQ capacity and slower NPQ induction may explain the lower biomass accumulation of MinnGold in the field. Our physiological observations, combined with fluorescence kinetics, can serve as a basis to parameterize Chl content in modelling radiative transfer and photosynthesis for upscaling measures of plant and ecosystem productivity by a big leaf model

    Pituitary and systemic autoimmunity in a case of intrasellar germinoma

    Get PDF
    Germinomas arising in the sella turcica are difficult to differentiate from autoimmune hypophysitis because of similar clinical and pathological features. This differentiation, nevertheless, is critical for patient care due to different treatments of the two diseases. We report the case of an 11-year-old girl who presented with diabetes insipidus and growth retardation, and was found to have an intra- and supra-sellar mass. Initial examination of the pituitary biopsy showed diffuse lymphocytic infiltration of the adenohypophysis and absent placental alkaline phosphatase expression, leading to a diagnosis of hypophysitis and glucocorticoid treatment. Because of the lack of clinical and radiological response, the pituitary specimen was re-examined, revealing this time the presence of scattered c-kit and Oct4 positive germinoma cells. The revised diagnosis prompted the initiation of radiotherapy, which induced disappearance of the pituitary mass. Immunological studies showed that the patient’s serum recognized antigens expressed by the patient’s own germinoma cells, as well as pituitary antigens like growth hormone and systemic antigens like the Sjögren syndrome antigen B and alpha-enolase. The study first reports the presence of pituitary and systemic antibodies in a patient with intrasellar germinoma, and reminds us that diffuse lymphocytic infiltration of the pituitary gland and pituitary antibodies does not always indicate a diagnosis of autoimmune hypophysitis

    The consequences of growth hormone-releasing hormone receptor haploinsufficiency for bone quality and insulin resistance

    Get PDF
    Objective Growth hormone (GH)/insulin-like growth factor (IGF) axis and insulin are key determinants of bone remodelling. Homozygous mutations in the GH-releasing hormone receptor (GHRHR) gene (GHRHR) are a frequent cause of genetic isolated GH deficiency (IGHD). Heterozygosity for GHRHR mutation causes changes in body composition and possibly an increase in insulin sensitivity, but its effects on bone quality are still unknown. The objective of this study was to assess the bone quality and metabolism and its correlation with insulin sensitivity in subjects heterozygous for a null mutation in the GHRHR. Patients and methods A cross-sectional study was performed on 76 normal subjects (68.4% females) (N/N) and 64 individuals (64.1% females) heterozygous for a mutation in the GHRHR (MUT/N). Anthropometric features, quantitative ultrasound (QUS) of the heel, bone markers [osteocalcin (OC) and CrossLaps], IGF-I, glucose and insulin were measured, and homeostasis model assessment of insulin resistance (HOMAIR) was calculated. Results There were no differences in age or height between the two groups, but weight (P = 0.007) and BMI (P = 0.001) were lower in MUT/N. There were no differences in serum levels of IGF-I, glucose, T-score or absolute values of stiffness and OC, but insulin (P = 0.01), HOMAIR (P = 0.01) and CrossLaps (P = 0.01) were lower in MUT/N. There was no correlation between OC and glucose, OC and HOMAIR in the 140 individuals as a whole or in the separate MUT/N or N/N groups. Conclusions This study suggests that one allele mutation in the GHRHR gene has a greater impact on energy metabolism than on bone quality.NIH, National Institutes of Health USA [1 R01 DK065718]FAPITEC/SE, BrazilCAPESFAEP

    Walking and postural balance in adults with severe short stature due to isolated GH deficiency

    Get PDF
    Objectives: Walking and postural balance are extremely important to obtain food and to work. Both are critical for quality of life and ability to survive. While walking reflects musculoskeletal and cardiopulmonary systems, postural balance depends on body size, muscle tone, visual, vestibular and nervous systems. Since GH and IGF-I act on all these systems, we decided to study those parameters in a cohort of individuals with severe short stature due to untreated isolated GH deficiency (IGHD) caused by a mutation in the GHRH receptor gene. These IGHD subjects, despite reduction in muscle mass, are very active and have normal longevity. Methods: In a cross-sectional study, we assessed walking (by a 6-min walk test), postural balance (by force platform) and fall risk (by the 'Timed Up and Go' test) in 31 IGHD and 40 matched health controls. Results: The percentage of the walked distance measured in relation to the predicted one was similar in groups, but higher in IGHD, when corrected by the leg length. Absolute postural balance data showed similar velocity of unipodal support in the two groups, and better values, with open and closed eyes and unipodal support, in IGHD, but these differences became non-significant when corrected for height and lower-limb length. The time in 'Timed Up and Go' test was higher in IGHD cohort, but still below the cut-off value for fall risk. Conclusion: IGHD subjects exhibit satisfactory walking and postural balance, without increase in fall risk

    Cell-to-Cell Signaling Influences the Fate of Prostate Cancer Stem Cells and Their Potential to Generate More Aggressive Tumors

    Get PDF
    An increasing number of malignancies has been shown to be initiated and propelled by small subpopulations of cancer stem cells (CSC). However, whether tumor aggressiveness is driven by CSC and by what extent this property may be relevant within the tumor mass is still unsettled. To address this issue, we isolated a rare tumor cell population on the basis of its CD44+CD24− phenotype from the human androgen-independent prostate carcinoma cell line DU145 and established its CSC properties. The behavior of selected CSC was investigated with respect to the bulk DU145 cells. The injection of CSC in nude mice generated highly vascularized tumors infiltrating the adjacent tissues, showing high density of neuroendocrine cells and expressing low levels of E-cadherin and β-catenin as well as high levels of vimentin. On the contrary, when a comparable number of unsorted DU145 cells were injected the resulting tumors were less aggressive. To investigate the different features of tumors in vivo, the influence of differentiated tumor cells on CSC was examined in vitro by growing CSC in the absence or presence of conditioned medium from DU145 cells. CSC grown in permissive conditions differentiated into cell populations with features similar to those of cells held in aggressive tumors generated from CSC injection. Differently, conditioned medium induced CSC to differentiate into a cell phenotype comparable to cells of scarcely aggressive tumors originated from bulk DU145 cell injection. These findings show for the first time that CSC are able to generate differentiated cells expressing either highly or scarcely aggressive phenotype, thus influencing prostate cancer progression. The fate of CSC was determined by signals released from tumor environment. Moreover, using microarray analysis we selected some molecules which could be involved in this cell-to-cell signaling, hypothesizing their potential value for prognostic or therapeutic applications
    corecore