21 research outputs found

    Vasodilator Phosphostimulated Protein (VASP) Protects Endothelial Barrier Function During Hypoxia

    Get PDF
    The endothelial barrier controls the passage of solutes from the vascular space. This is achieved through active reorganization of the actin cytoskeleton. A central cytoskeletal protein involved into this is vasodilator-stimulated phosphoprotein (VASP). However, the functional role of endothelial VASP during hypoxia has not been thoroughly elucidated. We determined endothelial VASP expression through real-time PCR (Rt-PCR), immunhistochemistry, and Western blot analysis during hypoxia. VASP promoter studies were performed using a PGL3 firefly luciferase containing plasmid. Following approval by the local authorities, VASP−/− mice and littermate controls were subjected to normobaric hypoxia (8% O2, 92% N2) after intravenous injection of Evans blue dye. In in vitro studies, we found significant VASP repression in human microvascular and human umbilical vein endothelial cells through Rt-PCR, immunhistochemistry, and Western blot analysis. The VASP promoter construct demonstrated significant repression in response to hypoxia, which was abolished when the binding of hypoxia-inducible factor 1 alpha was excluded. Exposure of wild-type (WT) and VASP−/− animals to normobaric hypoxia for 4 h resulted in an increase in Evans blue tissue extravasation that was significantly increased in VASP−/− animals compared to WT controls. In summary, we demonstrate here that endothelial VASP holds significant importance for endothelial barrier properties during hypoxia

    CD36 and Fyn kinase mediate malaria-induced lung endothelial barrier dysfunction in mice infected with Plasmodium berghei.

    Get PDF
    PMC3744507Severe malaria can trigger acute lung injury characterized by pulmonary edema resulting from increased endothelial permeability. However, the mechanism through which lung fluid conductance is altered during malaria remains unclear. To define the role that the scavenger receptor CD36 may play in mediating this response, C57BL/6J (WT) and CD36-/- mice were infected with P. berghei ANKA and monitored for changes in pulmonary endothelial barrier function employing an isolated perfused lung system. WT lungs demonstrated a >10-fold increase in two measures of paracellular fluid conductance and a decrease in the albumin reflection coefficient (σalb) compared to control lungs indicating a loss of barrier function. In contrast, malaria-infected CD36-/- mice had near normal fluid conductance but a similar reduction in σalb. In WT mice, lung sequestered iRBCs demonstrated production of reactive oxygen species (ROS). To determine whether knockout of CD36 could protect against ROS-induced endothelial barrier dysfunction, mouse lung microvascular endothelial monolayers (MLMVEC) from WT and CD36-/- mice were exposed to H2O2. Unlike WT monolayers, which showed dose-dependent decreases in transendothelial electrical resistance (TER) from H2O2 indicating loss of barrier function, CD36-/- MLMVEC demonstrated dose-dependent increases in TER. The differences between responses in WT and CD36-/- endothelial cells correlated with important differences in the intracellular compartmentalization of the CD36-associated Fyn kinase. Malaria infection increased total lung Fyn levels in CD36-/- lungs compared to WT, but this increase was due to elevated production of the inactive form of Fyn further suggesting a dysregulation of Fyn-mediated signaling. The importance of Fyn in CD36-dependent endothelial signaling was confirmed using in vitro Fyn knockdown as well as Fyn-/- mice, which were also protected from H2O2- and malaria-induced lung endothelial leak, respectively. Our results demonstrate that CD36 and Fyn kinase are critical mediators of the increased lung endothelial fluid conductance caused by malaria infection.JH Libraries Open Access Fun

    Macrophages in Alzheimer’s disease: the blood-borne identity

    Get PDF
    Alzheimer’s disease (AD) is a progressive and incurable neurodegenerative disorder clinically characterized by cognitive decline involving loss of memory, reasoning and linguistic ability. The amyloid cascade hypothesis holds that mismetabolism and aggregation of neurotoxic amyloid-β (Aβ) peptides, which are deposited as amyloid plaques, are the central etiological events in AD. Recent evidence from AD mouse models suggests that blood-borne mononuclear phagocytes are capable of infiltrating the brain and restricting β-amyloid plaques, thereby limiting disease progression. These observations raise at least three key questions: (1) what is the cell of origin for macrophages in the AD brain, (2) do blood-borne macrophages impact the pathophysiology of AD and (3) could these enigmatic cells be therapeutically targeted to curb cerebral amyloidosis and thereby slow disease progression? This review begins with a historical perspective of peripheral mononuclear phagocytes in AD, and moves on to critically consider the controversy surrounding their identity as distinct from brain-resident microglia and their potential impact on AD pathology

    The Janus-faced regulation of endothelial permeability by cyclic GMP

    No full text
    corecore