22 research outputs found

    Investigation of Photoluminescence and Photocurrent in InGaAsP/InP Strained Multiple Quantum Well Heterostructures

    Get PDF
    Multiple quantum well InGaAsP/InP p-i-n laser heterostructures with different barrier thicknesses have been investigated using photoluminescence (PL) and photocurrent (PC) measurements. The observed PL spectrum and peak positions are in good agreement with those obtained from transfer matrix calculations. Comparing the measured quantum well PC with calculated carrier escape rates, the photocurrent changes are found to be governed by the temperature dependence of the electron escape time

    Temperature Dependence of Photoluminescence in InGaAs/InP Strained MQW Heterostructures

    Get PDF
    Multiple quantum well (MQW) InGaAsP/InP heterostructure systems have been drawn considerable research interest in recent years due to its suitability for long wavelength optoelectronic devices. The performance of such devices is strongly affected by peculiarities of recombination processes in the quantum wells (QW). The goal of this study was to investigate the effect of barrier width on the radiative recombination of carriers. In our study, the photoluminescence spectra from InGaAsP/lnP MQW double heterostructures have been measured in the 77-290 K temperature range with different excitation intensities

    Investigation of the basic physics of high efficiency semiconductor hot carrier solar cell

    Get PDF
    The main purpose of this research program is to investigate potential semiconductor materials and their multi-band-gap MQW (multiple quantum wells) structures for high efficiency solar cells for aerospace and commercial applications. The absorption and PL (photoluminescence) spectra, the carrier dynamics, and band structures have been investigated for semiconductors of InP, GaP, GaInP, and InGaAsP/InP MQW structures, and for semiconductors of GaAs and AlGaAs by previous measurements. The barrier potential design criteria for achieving maximum energy conversion efficiency, and the resonant tunneling time as a function of barrier width in high efficiency MQW solar cell structures have also been investigated in the first two years. Based on previous carrier dynamics measurements and the time-dependent short circuit current density calculations, an InAs/InGaAs - InGaAs/GaAs - GaAs/AlGaAs MQW solar cell structure with 15 bandgaps has been designed. The absorption and PL spectra in InGaAsP/InP bulk and MQW structures were measured at room temperature and 77 K with different pump wavelength and intensity, to search for resonant states that may affect the solar cell activities. Time-resolved IR absorption for InGaAsP/InP bulk and MQW structures has been measured by femtosecond visible-pump and IR-probe absorption spectroscopy. This, with the absorption and PL measurements, will be helpful to understand the basic physics and device performance in multi-bandgap InAs/InGaAs - InGaAs/InP - InP/InGaP MQW solar cells. In particular, the lifetime of the photoexcited hot electrons is an important parameter for the device operation of InGaAsP/InP MQW solar cells working in the resonant tunneling conditions. Lastly, time evolution of the hot electron relaxation in GaAs has been measured in the temperature range of 4 K through 288 K using femtosecond pump-IR-probe absorption technique. The temperature dependence of the hot electron relaxation time in the X valley has been measured

    Human embryonic stem cells: preclinical perspectives

    Get PDF
    Human embryonic stem cells (hESCs) have been extensively discussed in public and scientific communities for their potential in treating diseases and injuries. However, not much has been achieved in turning them into safe therapeutic agents. The hurdles in transforming hESCs to therapies start right with the way these cells are derived and maintained in the laboratory, and goes up-to clinical complications related to need for patient specific cell lines, gender specific aspects, age of the cells, and several post transplantation uncertainties. The different types of cells derived through directed differentiation of hESC and used successfully in animal disease and injury models are described briefly. This review gives a brief outlook on the present and the future of hESC based therapies, and talks about the technological advances required for a safe transition from laboratory to clinic

    Persistent Left Superior Vena Cava: Implications of Surgical Management

    No full text

    Mitochondrial permeability transition in cardiomyocyte apoptosis during acute graft rejection

    No full text
    International audienceEvidence indicates that acute cardiac graft rejection is associated with cardiomyocyte apoptosis. Mitochondrial permeability transition (MPT) induces apoptotic cell death. We sought to determine whether MPT might play a role in cardiomyocyte apoptosis in the rat model of heterotopic cardiac transplantation. Syngenic and allogenic transplantations were performed, and both native and grafted hearts were harvested 3 or 5 d after transplantation for detection of acute rejection, assessment of Ca2+-induced MPT, and myocardial apoptosis by TUNEL staining and caspase 3 activity. Allogenic grafts developed severe acute rejection at day 5 with concomitant cardiomyocyte apoptosis (apoptotic index: 7.1 +/- 1.0% vs. 1.0 +/- 0.2% in syngenic hearts, and caspase 3 activity: 38 +/- 25 vs. 5 +/- 9 nmol/mg, in allogenic vs. syngenic grafts, respectively). At day 5, Ca2+-induced MPT was dramatically altered in allogenic when compared with syngenic grafts (mean Ca2+ overload averaged 0 +/- 20 vs. 280 +/- 30 muM in allogenic and syngenic grafts, respectively). NIM811, a nonimmunosuppressive derivative of cyclosporin A (CsA), that specifically inhibits the MPT pore, did not alter acute rejection, but significantly delayed Ca2+-induced MPT pore opening, attenuated caspase 3 activity and cardiomyocyte apoptosis in allogenic grafts. This suggests that mitochondrial permeability transition pore opening may play an important role in cardiomyocyte apoptosis associated with acute cardiac graft rejection

    Identification and characterization of two genes (MIP-1 beta, VE-CADHERIN) implicated in acute rejection in human heart transplantation : Use of murine models in tandem with cDNA arrays

    No full text
    International audienceBackground - Genes and mechanisms of action involved in human acute rejection after allogeneic heart transplantation remain to be elucidated. The use of a murine allograft model in tandem with cDNA arrays and quantitative real-time polymerase chain reaction (Q-PCR) can greatly help in identifying key genes implicated in human heart acute rejection. Methods and Results - Hearts from Balb/c mice were either not transplanted or transplanted heterotopically in the abdomen of Balb/c (isografts) and C57BL/6 (allografts) mice. Histological analysis showed acute rejection only in allografts. Total RNA was extracted from isografts (n = 3), allografts (n = 4), and not transplanted hearts (n = 4); reverse transcribed; and labeled with P32. Each probe was hybridized to cDNA macroarrays. Eight genes were overexpressed and 7 genes were underexpressed in allografts compared with isografts. Macrophage inflammatory protein-1 beta (MIP-1 beta), an overexpressed gene, and VE-cadherin, an underexpressed gene, were validated by immunohistochemistry and Q-PCR in the murine models. Genes of interest, validated in the 3 murine groups, were then investigated in human heart tissues. Immunohistochemistry and Q-PCR performed on endomyocardial biopsies after heart transplantation showing no rejection (n = 10) or grade IB (n = 10) or IIIA (n = 10) rejection, according to International Society of Heart and Lung Transplantation criteria, confirmed the results obtained from the murine model. Conclusions - We have demonstrated that the upregulation of MIP-1 beta and downregulation of VE-cadherin may strongly participate in human acute heart rejection
    corecore