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Multiple quantum well InGaAsP/lnP p-i-n laser heterostructures with different barrier thicknesses
have been investigated using photoluminescence (PL) and photocurrent (PC) measurements. The

observed PL spectrum and peak positions are in good agreement with those obtained from transfer

matrix calculations. Comparing the measured quantum well PC with calculated carrier escape rates,

the photocurrent changes are found to be governed by the temperature dependence of the electron
escape time. © 1997 American Institute of Physics. [S0021-8979(97)07201-0]
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I. INTRODUCTION

In recent years multiple quantum well (MQW) InGaAsP/

lnP heterostructure systems have been an intense reserach

area due to their suitability for long wavelength devices, 1'2

such as infrared detectors, laser, and electro-optical modula-

tors. High radiation resistance of lnP-based solar cells makes

them potential candidates for space applications. 3 Several

groups have already reported on InGaAs/InP-based 4"5MQW

solar cells. The performance of MQW devices strongly de-

pends on recombination and escape processes in the quantum

wells (QW). A better understanding of these processes and

their relationship with structural and compositional param-

eters of heterostructures is important for improving and de-

veloping MQW devices. Photoluminescence (PL) and photo-
current (PC) measurements are reliable sources of

information about the carrier escape mechanism and under-
lying physical processes. 6-_

In this article, we present our studies on the photolumi-

nescent and photoconductive properties of the MQW
lnGaAsP/lnP p-i-n heterostructures. An efficient escape and

collection of photoexcited carriers and factors which influ-
ence them are the main concern of this work, because of their

importance for photovoltaic applications. The temperature

dependence of PL, PC, and dark current (DC) is used to

relate the amplitude of photocurrent with the carrier escape
rates and the losses due to nonradiative recombination.

II. SAMPLES

Two InGaAsP/InP MQW samples with a fixed well
width and different barrier thicknesses were grown on

n _-type lnP substrates in a low-pressure (60 Torr) metalor-
ganic chemical vapor deposition (MOCVD) reactor. 9 The

unintentionally doped (light p-type) active MQW region

consisted of 9×70 A compressively strained wells of In-

GaAsP (band gap h=1.35 #) and 8×80 and 8×150 A

lattice-matched barriers of lnGaAsP (band gap h_l.12 /.t

_"Presentaddress: Lucent Technologies, Bell Laboratories, North Andover,
Massachusetts 01845.

samples 382 and 381, correspondingly). High resolution

x-ray analysis revealed the well strain to be _-l.5°k. The

MQW region was confined by 500 A undoped InGaAsP

(band gap h=l.12 #) separate confinement layers and em-
bedded between n- and p-lnP (I .5× 1018 cm -3) cladding lay-

ers (see Fig. I). The p-type InP layer was covered with a

600-A-thick lnGaAsP cap (band gap h_l.12 #). For I-V
measurements contacts on both MQW samples were formed

by evaporating gold at 10 -6 Torr to make ringlike contacts

on the top (inner radius--2 mm) and circlelike contacts on
the bottom.

III. METHOD

A mode-locked Nd3+:yttrium-aluminum-garnet (YAG)

laser with second harmonic generation system (532 nm

wavelength) was used as an excitation source in all PL mea-

surements, and PL spectra were recorded on 0.25 m SPEX

spectrometer using a standard phase lock-in technique. For

low temperature measurements the samples were wired and

placed into a temperature-variable cryostat. The I-V and

spectra response characteristics were measured on a Keithley
236 Source-Measure unit with combination of the quartz

tungsten halogen lamp and 0.25 m monochromator as a light
source.

IV. RESULTS

A. PL measurements

PL spectra for both InGaAsP MQW samples at 77 K and

zero voltage bias are shown in Fig. 2 (h_,=532 nm). The

peak at 1.23-1.24 # is assigned to the radiative recombina-
tion of carriers in the QW (a transition between electron and

heavy hole ground states), while the 1.07 /z peak, to which

we will later refer as "barrier" peak, is due to the emission

from the barrier, cap, and confinement layers. The relative

strength of the QW peak is higher for the 150 A barrier

sample than for the 80 A barrier sample. This observation is

attributed to stronger carrier confinement and lower escape

rate for the first sample. For both samples the observed full
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FIG. 1. Schematic diagram of the InGaAsP/InP MQW structure.

width at half maximum (FWHM) of the QW peaks is within

10-12 meV, which indicates good structural and optical

quality of the QW.

The absorption for these InGaAsP/lnP MQW samples

was also measured and compared with their corresponding

PL spectra. The QW PL maxima for both samples were
found to be shifted up by 8-10 meV in respect to the exci-

tonic absorption peak. This suggests band-to-band transitions

as a dominant radiative recombination process.

The temperature dependence of PL spectra for sample

381 (150 A barrier) at zero voltage bias is shown in Fig. 3.

As temperature increases, the following changes are ob-

served in the PL spectra. First, the PL peak positions shift to

the long wavelength side, consistent with changes in the en-

ergy band gap; second, the PL line intensities significantly
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FIG. 2. PL spectra lor InGaAsP/InP MQW sample at 77 K.
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FIG. 3. Evolution of the PL spectrum for MQW lnGaAsP/lnP with tem-
perature for sample 381 (150 A barrier).

decrease; and third, the PL FWHM broadens. Closer to room

temperature, the thermal spreading of the carrier population

contributes to an increased radiation from excited QW states

as well as to a general broadening of the PL lines.

Figure 4(a) presents the temperature dependence of the

QW PL peak position for both samples while the solid lines

are the value of the energy band gap for the corresponding

bulk lnGaAsP alloy calculated using the phenomenological

Varshni equation I° of --gapF'lnGaAsP( T)---, = --gapb?lnGaAsP(o),--, -- ot . T2[

(fl + T), where T is the temperature in K, a = 6.9X 10 -4

eV/K, and/3=327 K. The experimental data show essentially

the same temperature dependence as the band gap of the bulk

lnGaAsP alloy, which allows us to conclude that the QW

energy subbands remain mainly unaffected by the tempera-

ture changes. This behavior is similar to the results reported
for lnGaAs/lnP MQW structures.ll

The ratio of well-to-barrier PL peak intensities IQw/l B
[shown in Fig. 4(b)] provides information about the interre-

lationship between carrier capture and escape times r_a_ and
%so. The IQw/l B ratio can be written 12as a function of the

(nQwPQw)/(nbPb) -- IQW/IB oc (nQwPQw)l(nbPb), where

nQW, PQW, rib, and Pb are electron and hole densities in the
QW and barrier, respectively, which, in turn, can be ex-

pressed in terms of carried escape and capture times _scp and
t,p.

_ap" (nOwPow)/(nbPb) oc (_xc_sc)/(_ap_ap), where n and
p indices stand for electron and hole, correspondingly. Tak-

ing the ratio of intensities instead of just/QW or I B alone also
reduces the effect of temperature dependence of radiative
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FIG. 4. (a) Quantum well PL line position vs T for lnGaAsP/InP MQW.
Solid lines---calculated values for band gap of lnGaAsP bulk alloy. (bl the
ratio of well-to-barrier PL peak intensities vs T. Triangles--382 (80 A bar-
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recombination rate on analysis Iz as well as eliminates errors

due to pump power fluctuations. As is shown in Fig. 4(b), the

ratio predictably reduces with rising temperature as more and

more carriers are thermally activated out of the QW, thus

effectively decreasing the QW PL. This also can be inter-

preted as a reduction of the carrier escape time over capture

time.

The PL intensities of barrier and QW peaks are dis-

played in Fig. 5 at different bias voltage. When negative bias
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FIG. 5. PL intensity vs applied voltage for InGaAsP/lnP MQW at room
temperature; sample 283 (80 A barrier).
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FIG. 6. Spectral response of InGaAsP/InP MQW heterostructure samples at

77 K. The arrows indicate the calculated values of optical transitions in the
QW. The inset shows sample's energy diagram v,,ith possible escape chan-
nels.

is applied, the separation of electron-hole pairs generated

inside the undoped MQW region increases, such that the

excited carriers can escape before they recombine in the QW.

The highly doped layers remain relatively unaffected by the

bias and should not exhibit any significant changes in the PL.

It can be seen that the QW emission is very sensitive to bias,

whereas the barrier PL intensity is almost unaffected. This

suggests that most of the barrier PL emission comes from the

topmost InGaAsP cap and confinement layer rather than the

barriers.

For high pump intensities the photogenerated carriers in

the MQW region can effectively screen the built-in field and

thus cause change in the measured spectra. To account for

this effect, a series of PL spectra at different excitation in-

tensities were measured at room temperature. Over 2.5 de-

cades of the pump intensities ((I.3-45 W/cm:), no noticeable

line shape or position change was observed, indicating that

the excited carrier densities were relatively low and did not

affect the internal potential distribution.

B. Photocurrent measurements

The measured photocurrent density versus irradiative

wavelength Jphom(h) for the MQW lnGaAsP/lnP samples at

77 K and zero bias is displayed in Fig. 6. The curves were

normalized and corrected for the system spectral response. It

can be seen that, compared to the InP part, the QW and

barrier regions make a significant contribution to the total

current, which has been observed throughout the entire in-

vestigated temperature range. The difference between the

150 and 80 A samples is shown in Fig. 6. The sample with

150 A barriers produces sharper el_hhl and el_lhl QW

peaks and more pronounced barrier line, which is consistent

with thicker barriers in this sample.
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Figure 7 shows normalized integrated QW photocurrent

density Jphoto(h) versus temperature for the 150 and 80 A

barrier samples. Both curves show similar behavior with an

initial rise to a maximum near -_220 K and a decline towards

room temperature. The rise portion can be attributed to the

thermal activation of photoexcited carriers in the QW; the

decline portion is most likely due to some thermo-activated

non-radiative process.

C. Dark current measurements

Figure 8 shows the dark current (DC) density curves

JDc(V) measured at room temperature. The differences be-

tween samples are most noticeable in the reverse bias portion
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FIG. 8. Dark current density for the InGaAsP/lnP MQW samples at room

temperalure.
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FIG. 9. Temperature dependence of dark current density for InGaAsP/lnP
MQW. Sample 382 (80 A barrier}.

of the I-V characteristics, where variations in internal

built-in fields are enhanced by the external voltage. For a

given negative bias, a larger dark current is observed lbr

more narrow barrier.

in the forward bias domain, three components are distin-

guished, denoted by I, II, and 111 in Fig. 8, which are com-

mon to both samples. The relative strength of each compo-

nent depends differently on the temperature, as seen in Fig.

9. The second component (I1) begins to appear lbr T>180-

210 K and completely vanishes below these temperatures for

the 382 sample (80 A barrier). Similar behavior was ob-

served in the other sample. This tact is compared with the

observed PC decrease for T>200 K in Fig. 7, and it is con-

cluded that these trends in PC and DC are related to each

other and probably caused by the same thermally activated

process. The value of the diode ideality factor lor the second

DC component is estimated to be --_2, which indicates that

this component is due to the contribution from the

recombination-generation current. Therefore, we believe that

the reduction of PC is caused by the thermo-activated non-

radiative recombination on impurity levels.

V. MODEL

A model is assumed in which the photoexcited carriers

successfully escaping from quantum wells contribute to the

QW part of photocurrent. The photocurrent density Jphoto can

be then written as i3 Jphoto -- qn2o I/7"esc, where q is the elec-

tron charge, n2# _ the 2D density of the photogenerated carri-

ers, and !/_ -_ the escape rate. The n2o is assumed to be a

relatively weak function of the external factors which deter-

mine the carrier escape rate, such as temperature and electric

field. Therefore the temperature dependence of the QW PC

should be mainly controlled by the corresponding changes in

the escape rate.

The temperature dependence of carrier escape rates is

evaluated for electrons and holes. Figure 10 presents the cal-
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culated escape rates and the measured QW PC versus recip-

rocal temperature. To make the comparison easier all the

curve were normalized to their corresponding values at room

temperature. In modeling, escape rates arising from both tun-

neling and thermionic emission are considered, and it is as-

sumed that these processes were independent of each other.

The inset in Fig. 6 schematically shows the two escape chan-

nels for the photoexcited carriers in the QW.

The total escape time "rtotaI can be written as (esc index in

7"is omitted for the brevity)

1 1 1
- + (l)

Tlotal Tt Tth

where rtn and rt are thermionic emission and tunneling times

in the quantum well, respectively. The rth is given by 14

r,-h = _,-_" _ exp kT ' (2)

where m,,. is the effective carrier mass in the quantum well,

w the well width, and Ebarr(F) the barrier height for n-th

energy subband. In the presence of an electric field F, the

barrier height can be written as

fw

Ebarr(F)=AEc.,-E,,-q. 2 , (3)

where AEc, _ is a conduction or valence band offset, E, the

energy of n-th energy subband measured from the center of

the well, and q the electron charge.

The tunneling escape time 7t for an arbitrary potential

V(z) can be written as _5

1 1 _'nh

r, -_ 2m.,

t, ,4,
where b is the barrier width and mb is the effective carrier

mass in the barrier.

VI. DISCUSSION

To calculate the carrier escape rates, the confined energy

states for electrons and holes were found using the standard

transfer matrix technique. 16 In our calculations it is assumed

that AE v = 0.61AEgap, where AEv is a valence band offset

for InGaAsP/lnP systems and AEgap the total band gap dis-

continuity. The estimated AEv and AE c were 1 12 and 72

meV, correspondingly. Other material parameters were ob-

tained as a linear interpolation between those of InP and

In0.53Gao.47As. 17 The calculated values of the QW optical

transitions are denoted by arrows in Fig.6. The theoretical

peak positions tend to fall behind the experimental photore-

sponse peaks on the energy scale, which is most likely due to

the overestimate of the carrier effective masses obtained

from interpolation. The calculations showed that the effect of

different barrier thickness on peak positions was very small

(less than 1 meV shift) compared to the uncertainties in ma-

terial parameters.

Another important issue in calculating escape rates is the

adequate assessment of internal built-in fields. Background

doping of the MQW region results in a variation of the

built-in electric field, and thus the calculation of energy

states in a p-i-n structure requires some knowledge about the

distribution of this field. Figure 11 presents the calculated

field distribution in the MQW region using the method de-

scribed by Lundstrom and Schuelke. 18 In the transfer matrix

calculations the inhomogeneous field inside the MQW region

is replaced with some constant field, obtained by averaging

across the MQW region. The resulting error in energy sub-

bands was estimated to be less than 5%.

The calculated temperature dependence of the carrier es-

cape rate 1/'rtotal(T) has been compared with the measured

QW photocurrent density Jpuoto(T) in Fig. 10. It is found that

the change of the measured photocurrent with temperature

mostly followed the changes of the electron escape rate. This

is expected, since in InGaAsP/InP QWs, electrons are the

carriers with the lowest escape time. The activation energy

obtained from single exponential fitting to the Jphoto

f(1/T) plot gives a value of 33_+2 meV for the effective

barrier height, which tends to be somewhat more than our

calculated value of 25 meV. Since effective barrier height is

directly proportional to the electric field, this discrepancy

may be a result of the averaging procedure we attempted

earlier. In order to explain the reduction of Jphoto(T) for

T>200 K, our model should be expanded and we should

take into account various nonradiative recombination pro-

cesses, which is out of the scope of this work. As mentioned
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earlier, this reduction of Jphoto(T) may occur when the pho-
togenerated carriers get trapped or recombine on impurity

levels located inside the energy band gap, which effectively
diminishes or eliminates their contribution to the total PC.

From this investigation of InGaAsP/InP based MQW

heterostructures, information was learned which can be im-

portant for designing efficient MQW devices, such as photo-
diodes and solar cells. This study showed that lowering tem-

perature below 200 K had an overall degrading effect on the

photocurrent in InGaAsP/InP based MQW; however, in the

range of 200-250 K a small rise of PC magnitude was ob-
served which was attributed to the reduction of losses due to

the carrier recombination on impurity levels. The difference
in barrier thickness--80 A vs 150 A--has the most profound

effect on amplitude of PL and PC. The sample with 150 A
barriers had _--1.8 more intense QW PL and twice as less PC

under the same experimental conditions. Because barrier

thickness mostly affects tunneling, this means that tunneling

through the barriers is a crucial element in carrier escape for
this particular range of thicknesses (80-150 A). The elec-

trons appeared to play a more significant role in defining the

photoconductive properties in these InGaAsP/InP hetero-

structures than their hole counterpart, as was discussed above

in the case of escape rates. The transfer matrix method and

interpolation scheme used to calculate energy subbands in

the InGaAsP QW show good agreement with the experiment.

In conclusion, MQW InGaAsP/InP p-i-n heterostructures

with different barrier thicknesses have been investigated by

measuring PL, PC, and DC. The observed PL and spectral

line positions were found to be in good agreement with those

obtained from transfer matrix calculations. Comparing the

measured QW PC with calculated carrier escape rates, the

photocurrent changes were found to be governed by the tem-

perature dependence of the electron escape time. An activa-

tion energy obtained from the PC data seems to support this
conclusion.
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