3,624 research outputs found

    Quantum-Classical Transition of Photon-Carnot Engine Induced by Quantum Decoherence

    Full text link
    We study the physical implementation of the Photon Carnot engine (PCE) based on the cavity QED system [M. Scully et al, Science, \textbf{299}, 862 (2003)]. Here, we analyze two decoherence mechanisms for the more practical systems of PCE, the dissipation of photon field and the pure dephasing of the input atoms. As a result we find that (I) the PCE can work well to some extent even in the existence of the cavity loss (photon dissipation); and (II) the short-time atomic dephasing, which can destroy the PCE, is a fatal problem to be overcome.Comment: 6 pages, 3 figure

    Glucose stimulates somatostatin secretion in pancreatic ÎŽ-cells by cAMP-dependent intracellular Ca2+ release

    Get PDF
    © 2019 Denwood et al.Somatostatin secretion from pancreatic islet ÎŽ-cells is stimulated by elevated glucose levels, but the underlying mechanisms have only partially been elucidated. Here we show that glucose-induced somatostatin secretion (GISS) involves both membrane potential-dependent and -independent pathways. Although glucose-induced electrical activity triggers somatostatin release, the sugar also stimulates GISS via a cAMP-dependent stimulation of CICR and exocytosis of somatostatin. The latter effect is more quantitatively important and in mouse islets depolarized by 70 mM extracellular K+, increasing glucose from 1 mM to 20 mM produced an ∌3.5-fold stimulation of somatostatin secretion, an effect that was mimicked by the application of the adenylyl cyclase activator forskolin. Inhibiting cAMP-dependent pathways with PKI or ESI-05, which inhibit PKA and exchange protein directly activated by cAMP 2 (Epac2), respectively, reduced glucose/forskolin-induced somatostatin secretion. Ryanodine produced a similar effect that was not additive to that of the PKA or Epac2 inhibitors. Intracellular application of cAMP produced a concentration-dependent stimulation of somatostatin exocytosis and elevation of cytoplasmic Ca2+ ([Ca2+]i). Both effects were inhibited by ESI-05 and thapsigargin (an inhibitor of SERCA). By contrast, inhibition of PKA suppressed ÎŽ-cell exocytosis without affecting [Ca2+]i Simultaneous recordings of electrical activity and [Ca2+]i in ÎŽ-cells expressing the genetically encoded Ca2+ indicator GCaMP3 revealed that the majority of glucose-induced [Ca2+]i spikes did not correlate with ÎŽ-cell electrical activity but instead reflected Ca2+ release from the ER. These spontaneous [Ca2+]i spikes are resistant to PKI but sensitive to ESI-05 or thapsigargin. We propose that cAMP links an increase in plasma glucose to stimulation of somatostatin secretion by promoting CICR, thus evoking exocytosis of somatostatin-containing secretory vesicles in the ÎŽ-cell.Peer reviewedFinal Published versio

    Quantum Critical Dynamics of A Qubit Coupled to An Isotropic Lipkin-Meshkov-Glick Bath

    Get PDF
    We explore a dynamic signature of quantum phase transition (QPT) in an isotropic Lipkin-Meshkov-Glick (LMG) model by studying the time evolution of a central qubit coupled to it. We evaluate exactly the time-dependent purity, which can be used to measure quantum coherence, of the central qubit. It is found that distinctly different behaviors of the purity as a function of the parameter reveal clearly the QPT point in the system. It is also clarified that the present model is equivalent to an anti Jaynes-Cummings model under certain conditions.Comment: 8 pages, 4 figure

    Guest Editorial Microassembly for Manufacturing at Small Scales.

    No full text
    International audienceMICROELECTRONICS brought an information revolution through integrating a vast number of microscopic transistors. Much progress has beenmade inminiaturization and integration of MEMS or MOEMS (Micro-(Opto-)Electro-Mechanical-Systems to produce accelerometers, inkjet printer heads, micro-mirrors, micro-relays, and pressure sensors. A new generation of MEMS is rapidly moving toward highly integrated, more complex heterogeneous microsystems with increased functionalities. Many limitations remain that are extremelydifficult to overcome, especially concerning processes and materials incompatibilities. microassembly is a natural and powerful approach to overcome these processes incompatibilities and to facilitate complex, heterogeneous, 3D, or out of plane integration. By using basic micro-scale components, microassembly constitutes a new alternative of Microsystems production that may lead to cost savings and shorter development cycle times. Because of the size of the components and of the required precision, automation is needed

    Dimension-free Mixing for High-dimensional Bayesian Variable Selection

    Full text link
    Yang et al. (2016) proved that the symmetric random walk Metropolis--Hastings algorithm for Bayesian variable selection is rapidly mixing under mild high-dimensional assumptions. We propose a novel MCMC sampler using an informed proposal scheme, which we prove achieves a much faster mixing time that is independent of the number of covariates, under the same assumptions. To the best of our knowledge, this is the first high-dimensional result which rigorously shows that the mixing rate of informed MCMC methods can be fast enough to offset the computational cost of local posterior evaluation. Motivated by the theoretical analysis of our sampler, we further propose a new approach called "two-stage drift condition" to studying convergence rates of Markov chains on general state spaces, which can be useful for obtaining tight complexity bounds in high-dimensional settings. The practical advantages of our algorithm are illustrated by both simulation studies and real data analysis

    A Cellular Automata Model with Probability Infection and Spatial Dispersion

    Full text link
    In this article, we have proposed an epidemic model by using probability cellular automata theory. The essential mathematical features are analyzed with the help of stability theory. We have given an alternative modelling approach for the spatiotemporal system which is more realistic and satisfactory from the practical point of view. A discrete and spatiotemporal approach are shown by using cellular automata theory. It is interesting to note that both size of the endemic equilibrium and density of the individual increase with the increasing of the neighborhood size and infection rate, but the infections decrease with the increasing of the recovery rate. The stability of the system around the positive interior equilibrium have been shown by using suitable Lyapunov function. Finally experimental data simulation for SARS disease in China and a brief discussion conclude the paper

    INDUSTRIES OF ANGKOR PROJECT: PRELIMINARY INVESTIGATION OF IRON PRODUCTION AT BOENG KROAM, PREAH KHAN OF KOMPONG SVAY

    Get PDF
    The Industries of Angkor Project (INDAP) is the first intensive investigation into the history and role of iron production at Preah Khan of Kompong Svay (Preah Khan), the largest regional enclosure complex built by the Angkorian Khmer (9th to 15th c. CE) in Cambodia. We present the initial multidisciplinary research of the primary iron smelting sites located on Boeng Kroam, a large reservoir located north of Preah Khan’s central temple complex. Ground-penetrating radar surveys and excavation at Location 1, a slag concentration on top of the reservoir bank, revealed that it is a deposit of metallurgical waste from a nearby furnace. Multiple radiocarbon dates from Location 1 indicate that the smelting activities took place in the early 15th century during the time of Angkor’s ultimate collapse as the political centre of the Khmer world. This indicates a re-use of spaces by iron workers after the primary occupation of Preah Khan between the 11th and 13th centuries
    • 

    corecore