4,138 research outputs found

    Investigation of parabolic computational techniques for internal high-speed viscous flows

    Get PDF
    A feasibility study was conducted to assess the applicability of an existing parabolic analysis (ADD-Axisymmetric Diffuser Duct), developed previously for subsonic viscous internal flows, to mixed supersonic/subsonic flows with heat addition simulating a SCRAMJET combustor. A study was conducted with the ADD code modified to include additional convection effects in the normal momentum equation when supersonic expansion and compression waves were present. It is concluded from the present study that for the class of problems where strong viscous/inviscid interactions are present a global iteration procedure is required

    Self-consistent massive disks in triaxial dark matter halos

    Get PDF
    Galactic disks in triaxial dark matter halos become deformed by the elliptical potential in the plane of the disk in such a way as to counteract the halo ellipticity. We develop a technique to calculate the equilibrium configuration of such a disk in the combined disk-halo potential, which is based on the method of Jog (2000) but accounts for the radial variation in both the halo potential and the disk ellipticity. This crucial ingredient results in qualitatively different behavior of the disk: the disk circularizes the potential at small radii, even for a reasonably low disk mass. This effect has important implications for proposals to reconcile cuspy halo density profiles with low surface brightness galaxy rotation curves using halo triaxiality. The disk ellipticities in our models are consistent with observational estimates based on two-dimensional velocity fields and isophotal axis ratios.Comment: ApJ, in pres

    Mass of Clusters in Simulations

    Get PDF
    We show that dark matter haloes, in n--body simulations, have a boundary layer (BL) with precise features. In particular, it encloses all dynamically stable mass while, outside it, dynamical stability is lost soon. Particles can pass through such BL, which however acts as a confinement barrier for dynamical properties. BL is set by evaluating kinetic and potential energies (T(r) and W(r)) and calculating R=-2T/W. Then, on BL, R has a minimum which closely approaches a maximum of w= -dlog W/dlog r. Such RwRw ``requirement'' is consistent with virial equilibrium, but implies further regularities. We test the presence of a BL around haloes in spatially flat CDM simulations, with or without cosmological constant. We find that the mass M_c, enclosed within the radius r_c, where the RwRw requirement is fulfilled, closely approaches the mass M_{dyn}, evaluated from the velocities of all particles within r_c, according to the virial theorem. Using r_c we can then determine an individual density contrast Delta_c for each virialized halo, which can be compared with the "virial" density contrast Δv 178Ωm0.45\Delta_v ~178 \Omega_m^{0.45} (Omega_m: matter density parameter) obtained assuming a spherically symmetric and unperturbed fluctuation growth. The spread in Delta_c is wide, and cannot be neglected when global physical quantities related to the clusters are calculated, while the average Delta_c is ~25 % smaller than the corresponding Delta_v; moreover if MdynM_{dyn} is defined from the radius linked to Delta_v, we have a much worse fit with particle mass then starting from {\it Rw} requirement.Comment: 4 pages, 5 figures, contribution to the XXXVIIth Rencontres de Moriond, The Cosmological Model, Les Arc March 16-23 2002, to appear in the proceeding

    Rotation of electromagnetic fields and the nature of optical angular momentum

    Get PDF
    The association of spin and orbital angular momenta of light with its polarization and helical phase fronts is now well established. The problems in linking this with electromagnetic theory, as expressed in Maxwell's equations, are rather less well known. We present a simple analysis of the problems involved in defining spin and orbital angular momenta for electromagnetic fields and discuss some of the remaining challenges. Crucial to our investigation is the duplex symmetry between the electric and magnetic fields

    Evaluation of denoising strategies to address motion-correlated artifacts in resting-state functional magnetic resonance imaging data from the human connectome roject

    Get PDF
    Like all resting-state functional connectivity data, the data from the Human Connectome Project (HCP) are adversely affected by structured noise artifacts arising from head motion and physiological processes. Functional connectivity estimates (Pearson's correlation coefficients) were inflated for high-motion time points and for high-motion participants. This inflation occurred across the brain, suggesting the presence of globally distributed artifacts. The degree of inflation was further increased for connections between nearby regions compared with distant regions, suggesting the presence of distance-dependent spatially specific artifacts. We evaluated several denoising methods: censoring high-motion time points, motion regression, the FMRIB independent component analysis-based X-noiseifier (FIX), and mean grayordinate time series regression (MGTR; as a proxy for global signal regression). The results suggest that FIX denoising reduced both types of artifacts, but left substantial global artifacts behind. MGTR significantly reduced global artifacts, but left substantial spatially specific artifacts behind. Censoring high-motion time points resulted in a small reduction of distance-dependent and global artifacts, eliminating neither type. All denoising strategies left differences between high- and low-motion participants, but only MGTR substantially reduced those differences. Ultimately, functional connectivity estimates from HCP data showed spatially specific and globally distributed artifacts, and the most effective approach to address both types of motion-correlated artifacts was a combination of FIX and MGTR

    DC-electric-field-induced and low-frequency electromodulation second-harmonic generation spectroscopy of Si(001)-SiO2_2 interfaces

    Get PDF
    The mechanism of DC-Electric-Field-Induced Second-Harmonic (EFISH) generation at weakly nonlinear buried Si(001)-SiO2_2 interfaces is studied experimentally in planar Si(001)-SiO2_2-Cr MOS structures by optical second-harmonic generation (SHG) spectroscopy with a tunable Ti:sapphire femtosecond laser. The spectral dependence of the EFISH contribution near the direct two-photon E1E_1 transition of silicon is extracted. A systematic phenomenological model of the EFISH phenomenon, including a detailed description of the space charge region (SCR) at the semiconductor-dielectric interface in accumulation, depletion, and inversion regimes, has been developed. The influence of surface quantization effects, interface states, charge traps in the oxide layer, doping concentration and oxide thickness on nonlocal screening of the DC-electric field and on breaking of inversion symmetry in the SCR is considered. The model describes EFISH generation in the SCR using a Green function formalism which takes into account all retardation and absorption effects of the fundamental and second harmonic (SH) waves, optical interference between field-dependent and field-independent contributions to the SH field and multiple reflection interference in the SiO2_2 layer. Good agreement between the phenomenological model and our recent and new EFISH spectroscopic results is demonstrated. Finally, low-frequency electromodulated EFISH is demonstrated as a useful differential spectroscopic technique for studies of the Si-SiO2_2 interface in silicon-based MOS structures.Comment: 31 pages, 14 figures, 1 table, figures are also available at http://kali.ilc.msu.su/articles/50/efish.ht

    Photon wave mechanics and position eigenvectors

    Full text link
    One and two photon wave functions are derived by projecting the quantum state vector onto simultaneous eigenvectors of the number operator and a recently constructed photon position operator [Phys. Rev A 59, 954 (1999)] that couples spin and orbital angular momentum. While only the Landau-Peierls wave function defines a positive definite photon density, a similarity transformation to a biorthogonal field-potential pair of positive frequency solutions of Maxwell's equations preserves eigenvalues and expectation values. We show that this real space description of photons is compatible with all of the usual rules of quantum mechanics and provides a framework for understanding the relationships amongst different forms of the photon wave function in the literature. It also gives a quantum picture of the optical angular momentum of beams that applies to both one photon and coherent states. According to the rules of qunatum mechanics, this wave function gives the probability to count a photon at any position in space.Comment: 14 pages, to be published in Phys. Rev.

    Evaluating the Relationship Between Visual Acuity and Utilities in Patients With Diabetic Macular Edema Enrolled in Intravitreal Aflibercept Studies

    Get PDF
    PURPOSE. The purpose of this study was to explore the relationship between visual acuity and utility (health-related quality of life) in diabetic macular edema (DME) using intravitreal aflibercept data. METHODS. The relationship between visual acuity in the best-seeing eye (BSE) and worseseeing eye (WSE) and utility was explored using ordinary least squares (OLS) and randomeffects models adjusted for different covariates (age, age2 , sex, body mass index, smoking status, glycated hemoglobin, diabetes severity, comorbidities, and geographic region). Utility was measured using the EuroQoL-five dimensions questionnaire (EQ-5D) and Visual Functioning Questionnaire-Utility Index (VFQ-UI). For each model, coefficients (R2 ) were reported, and WSE/BSE was expressed as the ratio of coefficients (OLS models). Models were independent of treatment effects, and outcomes from all time points (up to week 100) were included where available. RESULTS. Data from 1320 patients with DME were analyzed. In all models, the association between visual acuity (BSE > WSE) was stronger with VFQ-UI– than EQ-5D–derived utilities. The estimated relationship between VFQ-UI and visual acuity in the BSE and WSE was robust, even with an increasing number of covariates. WSE/BSE coefficient ratios were similar across VFQ-UI OLS models (32%) compared with EQ-5D models (41%–48%). Actual (unadjusted) versus predicted data plots also showed a better fit with VFQ-UI– than EQ-5D–derived utilities. CONCLUSIONS. These analyses show that VFQ-UI was more sensitive than EQ-5D–derived utilities for measuring the impact of visual acuity in the BSE and WSE. Visual acuity in the BSE was a major contributor to utility, but WSE is also important though to a lesser degree as shown by the coefficient ratios. These new data will be useful for health technology assessments in DME, where utilities data are lacking. Keywords: diabetic macular edema, intravitreal aflibercept, utilit
    corecore