3,423 research outputs found
Enhanced iron magnetic moment in the ThFe11C2 intermetallic compound
International audienceDetailed theoretical investigations on the electronic and magnetic properties of the ThFe11C2 compound have been performed using both the linear muffin-tin orbital and Korringa-Kohn-Rostocker methods of band structure calculation. The structure of the ThFe11C2 compound has three inequivalent iron sites with different local environment. A strongly enhanced magnetic moment is observed on certain Fe positions, coexisting with much lower magnetic moments on other iron positions of the lattice. Band structure calculations indeed show that the Fe magnetic moments depend strongly on the local environment. The average Fe magnetic moment obtained from these calculations is in good agreement with the experimental average Fe moment obtained from magnetization measurements. The orbital contribution to the magnetic moment is found to be especially large on the Fe 4b position. Comparing calculated hyperfine fields with experimental results, it is found that the calculated and experimental hyperfine fields are correlated. However, similarly to the results reported before for elemental Fe, the magnitude of all calculated Fe hyperfine fields is about 25% smaller. The agreement with the Mössbauer measurements is improved by scaling the core polarization contribution and by estimating the orbital valence d-electrons contribution to the magnetic hyperfine fields using the local spin density approximation + dynamical mean field theory calculated orbital moments
Analysis and Optimization of Mixed-Criticality Applications on Partitioned Distributed Architectures
Particle methods for a virtual patient
The particle systems approach is a well known technique in computer graphics for modelling fuzzy objects such as fire and clouds. The algorithm has also been applied to different biomedical applications and this paper presents two such methods: a charged particle method for soft tissue deformation with integrated haptics; and a blood flow visualization technique based on boids. The goal is real time performance with high fidelity results
Bistability in a Mesoscopic Josephson Junction Array Resonator
We present an experimental investigation of stochastic switching of a
bistable Josephson junctions array resonator with a resonance frequency in the
GHz range. As the device is in the regime where the anharmonicity is on the
order of the linewidth, the bistability appears for a pump strength of only a
few photons. We measure the dynamics of the bistability by continuously
observing the jumps between the two metastable states, which occur with a rate
ranging from a few Hz down to a few mHz. The switching rate strongly depends on
the pump strength, readout strength and the temperature, following Kramer's
law. The interplay between nonlinearity and coupling, in this little explored
regime, could provide a new resource for nondemolition measurements, single
photon switches or even elements for autonomous quantum error correction.Comment: main text: 6 pages, 4 figures; supplementary material: 9 pages, 9
figure
Experimental demonstration of Aharonov-Casher interference in a Josephson junction circuit
A neutral quantum particle with magnetic moment encircling a static electric
charge acquires a quantum mechanical phase (Aharonov-Casher effect). In
superconducting electronics the neutral particle becomes a fluxon that moves
around superconducting islands connected by Josephson junctions. The full
understanding of this effect in systems of many junctions is crucial for the
design of novel quantum circuits. Here we present measurements and quantitative
analysis of fluxon interference patterns in a six Josephson junction chain. In
this multi-junction circuit the fluxon can encircle any combination of charges
on five superconducting islands, resulting in a complex pattern. We compare the
experimental results with predictions of a simplified model that treats fluxons
as independent excitations and with the results of the full diagonalization of
the quantum problem. Our results demonstrate the accuracy of the fluxon
interference description and the quantum coherence of these arrays
Computational requirements of the virtual patient
Medical visualization in a hospital can be used to aid training, diagnosis, and pre- and intra-operative planning. In such an application, a virtual representation of a patient is needed that is interactive, can be viewed in three dimensions (3D), and simulates physiological processes that change over time. This paper highlights some of the computational challenges of implementing a real time simulation of a virtual patient, when accuracy can be traded-off against speed. Illustrations are provided using projects from our research based on Grid-based visualization, through to use of the Graphics Processing Unit (GPU)
Individual-specific changes in the human gut microbiota after challenge with enterotoxigenic Escherichia coli and subsequent ciprofloxacin treatment
Acknowledgements The authors wish to thank Mark Stares, Richard Rance, and other members of the Wellcome Trust Sanger Institute’s 454 sequencing team for generating the 16S rRNA gene data. Lili Fox Vélez provided editorial support. Funding IA, JNP, and MP were partly supported by the NIH, grants R01-AI-100947 to MP, and R21-GM-107683 to Matthias Chung, subcontract to MP. JNP was partly supported by an NSF graduate fellowship number DGE750616. IA, JNP, BRL, OCS and MP were supported in part by the Bill and Melinda Gates Foundation, award number 42917 to OCS. JP and AWW received core funding support from The Wellcome Trust (grant number 098051). AWW, and the Rowett Institute of Nutrition and Health, University of Aberdeen, receive core funding support from the Scottish Government Rural and Environmental Science and Analysis Service (RESAS).Peer reviewedPublisher PD
Tsallis entropy approach to radiotherapy treatments
The biological effect of one single radiation dose on a living tissue has
been described by several radiobiological models. However, the fractionated
radiotherapy requires to account for a new magnitude: time. In this paper we
explore the biological consequences posed by the mathematical prolongation of a
model to fractionated treatment. Nonextensive composition rules are introduced
to obtain the survival fraction and equivalent physical dose in terms of a time
dependent factor describing the tissue trend towards recovering its
radioresistance (a kind of repair coefficient). Interesting (known and new)
behaviors are described regarding the effectiveness of the treatment which is
shown to be fundamentally bound to this factor. The continuous limit,
applicable to brachytherapy, is also analyzed in the framework of nonextensive
calculus. Also here a coefficient arises that rules the time behavior. All the
results are discussed in terms of the clinical evidence and their major
implications are highlighted.Comment: 6 figures, accepted for publication to Physica
Reducing the impact of radioactivity on quantum circuits in a deep-underground facility
As quantum coherence times of superconducting circuits have increased from
nanoseconds to hundreds of microseconds, they are currently one of the leading
platforms for quantum information processing. However, coherence needs to
further improve by orders of magnitude to reduce the prohibitive hardware
overhead of current error correction schemes. Reaching this goal hinges on
reducing the density of broken Cooper pairs, so-called quasiparticles. Here, we
show that environmental radioactivity is a significant source of nonequilibrium
quasiparticles. Moreover, ionizing radiation introduces time-correlated
quasiparticle bursts in resonators on the same chip, further complicating
quantum error correction. Operating in a deep-underground lead-shielded
cryostat decreases the quasiparticle burst rate by a factor fifty and reduces
dissipation up to a factor four, showcasing the importance of radiation
abatement in future solid-state quantum hardware
Thermal Conductivity and Thermal Rectification in Graphene Nanoribbons: a Molecular Dynamics Study
We have used molecular dynamics to calculate the thermal conductivity of
symmetric and asymmetric graphene nanoribbons (GNRs) of several nanometers in
size (up to ~4 nm wide and ~10 nm long). For symmetric nanoribbons, the
calculated thermal conductivity (e.g. ~2000 W/m-K @400K for a 1.5 nm {\times}
5.7 nm zigzag GNR) is on the similar order of magnitude of the experimentally
measured value for graphene. We have investigated the effects of edge chirality
and found that nanoribbons with zigzag edges have appreciably larger thermal
conductivity than nanoribbons with armchair edges. For asymmetric nanoribbons,
we have found significant thermal rectification. Among various
triangularly-shaped GNRs we investigated, the GNR with armchair bottom edge and
a vertex angle of 30{\deg} gives the maximal thermal rectification. We also
studied the effect of defects and found that vacancies and edge roughness in
the nanoribbons can significantly decrease the thermal conductivity. However,
substantial thermal rectification is observed even in the presence of edge
roughness.Comment: 13 pages, 5 figures, slightly expanded from the published version on
Nano Lett. with some additional note
- …
