13 research outputs found

    Full-length human placental sFlt-1-e15a isoform induces distinct maternal phenotypes of preeclampsia in mice

    Get PDF
    <div><p>Objective</p><p>Most anti-angiogenic preeclampsia models in rodents utilized the overexpression of a truncated soluble fms-like tyrosine kinase-1 (sFlt-1) not expressed in any species. Other limitations of mouse preeclampsia models included stressful blood pressure measurements and the lack of postpartum monitoring. We aimed to 1) develop a mouse model of preeclampsia by administering the most abundant human placental sFlt-1 isoform (hsFlt-1-e15a) in preeclampsia; 2) determine blood pressures in non-stressed conditions; and 3) develop a survival surgery that enables the collection of fetuses and placentas and postpartum (PP) monitoring.</p><p>Methods</p><p>Pregnancy status of CD-1 mice was evaluated with high-frequency ultrasound on gestational days (GD) 6 and 7. Telemetry catheters were implanted in the carotid artery on GD7, and their positions were verified by ultrasound on GD13. Mice were injected through tail-vein with adenoviruses expressing hsFlt-1-e15a (n = 11) or green fluorescent protein (GFP; n = 9) on GD8/GD11. Placentas and pups were delivered by cesarean section on GD18 allowing PP monitoring. Urine samples were collected with cystocentesis on GD6/GD7, GD13, GD18, and PPD8, and albumin/creatinine ratios were determined. GFP and hsFlt-1-e15a expression profiles were determined by qRT-PCR. Aortic ring assays were performed to assess the effect of hsFlt-1-e15a on endothelia.</p><p>Results</p><p>Ultrasound predicted pregnancy on GD7 in 97% of cases. Cesarean section survival rate was 100%. Mean arterial blood pressure was higher in hsFlt-1-e15a-treated than in GFP-treated mice (∆MAP = 13.2 mmHg, p = 0.00107; GD18). Focal glomerular changes were found in hsFlt-1-e15a -treated mice, which had higher urine albumin/creatinine ratios than controls (109.3±51.7μg/mg vs. 19.3±5.6μg/mg, p = 4.4x10<sup>-2</sup>; GD18). Aortic ring assays showed a 46% lesser microvessel outgrowth in hsFlt-1-e15a-treated than in GFP-treated mice (p = 1.2x10<sup>-2</sup>). Placental and fetal weights did not differ between the groups. One mouse with liver disease developed early-onset preeclampsia-like symptoms with intrauterine growth restriction (IUGR).</p><p>Conclusions</p><p>A mouse model of late-onset preeclampsia was developed with the overexpression of hsFlt-1-e15a, verifying the <i>in vivo</i> pathologic effects of this primate-specific, predominant placental sFlt-1 isoform. HsFlt-1-e15a induced early-onset preeclampsia-like symptoms associated with IUGR in a mouse with a liver disease. Our findings support that hsFlt-1-e15a is central to the terminal pathway of preeclampsia, and it can induce the full spectrum of symptoms in this obstetrical syndrome.</p></div

    Contribution of plasma cells and B cells to hidradenitis suppurativa pathogenesis

    Get PDF
    Hidradenitis suppurativa (HS) is a debilitating chronic inflammatory skin disease characterized by chronic abscess formation and development of multiple draining sinus tracts in the groin, axillae, and perineum. Using proteomic and transcriptomic approaches, we characterized the inflammatory responses in HS in depth, revealing immune responses centered on IFN-γ, IL-36, and TNF, with lesser contribution from IL-17A. We further identified B cells and plasma cells, with associated increases in immunoglobulin production and complement activation, as pivotal players in HS pathogenesis, with Bruton’s tyrosine kinase (BTK) and spleen tyrosine kinase (SYK) pathway activation as a central signal transduction network in HS. These data provide preclinical evidence to accelerate the path toward clinical trials targeting BTK and SYK signaling in moderate-to-severe HS

    A Role for the Inflammasome in Spontaneous Labor at Term with Acute Histologic Chorioamnionitis

    No full text
    Inflammasomes are cytosolic signaling platforms that regulate the activation of caspase (CASP)-1, which induces the maturation of interleukin (IL)-1beta and IL-18. Herein, we determined whether the chorioamniotic membranes from women in spontaneous labor at term with acute histologic chorioamnionitis express major inflammasome components and whether these changes are associated with the activation of CASP-1 and CASP-4 and the release of mature IL-1beta and IL-18. When comparing the chorioamniotic membranes from women in spontaneous labor at term with acute histologic chorioamnionitis to those without this placental lesion, we found that (1) the messenger RNA (mRNA) abundance of NLR family pyrin domain containing 3 ( NLRP3), NLR family CARD domain containing 4 ( NLRC4), absent in melanoma 2 ( AIM2), and nucleotide binding oligomerization domain 2 ( NOD2) was higher; (2) the NLRP3 and NLRC4 protein quantities were increased; (3) the mRNA and protein expressions of CASP-1 and its active forms were greater; (4) CASP-4 was increased at the mRNA level only; (5) the mRNA and protein expressions of IL-1beta and its mature form were higher; and (6) a modest increase in the total protein concentration and abundance of the mature form of IL-18 was observed. In vitro incubation of the chorioamniotic membranes with the CASP-1 inhibitor, VX765, decreased the release of endotoxin-induced IL-1beta and IL-18 (2-fold) but not IL-6 or tumor necrosis factor alpha. In conclusion, spontaneous labor at term with acute histologic chorioamnionitis is characterized by an upregulation of inflammasome components which, in turn, may participate in the activation of CASP-1 and lead to the release of mature IL-1beta by the chorioamniotic membranes. These results support a role for the inflammasome in the mechanisms responsible for spontaneous labor at term with acute histologic chorioamnionitis

    Non-lesional lupus skin contributes to inflammatory education of myeloid cells and primes for cutaneous inflammation

    Full text link
    Cutaneous lupus erythematosus (CLE) is a disfiguring and poorly understood condition frequently associated with systemic lupus. Previous studies suggest that nonlesional keratinocytes play a role in disease predisposition, but this has not been investigated in a comprehensive manner or in the context of other cell populations. To investigate CLE immunopathogenesis, normal-appearing skin, lesional skin, and circulating immune cells from lupus patients were analyzed via integrated single-cell RNA sequencing and spatial RNA sequencing. We demonstrate that normal-appearing skin of patients with lupus represents a type I interferon–rich, prelesional environment that skews gene transcription in all major skin cell types and markedly distorts predicted cell-cell communication networks. We also show that lupus-enriched CD16+ dendritic cells undergo robust interferon education in the skin, thereby gaining proinflammatory phenotypes. Together, our data provide a comprehensive characterization of lesional and nonlesional skin in lupus and suggest a role for skin education of CD16+ dendritic cells in CLE pathogenesis.http://deepblue.lib.umich.edu/bitstream/2027.42/192260/2/Nonlesional lupus skin contributes to inflammatory education of myeloid cells and primes for cutaneous inflammation.pdfPublished versio

    Systems-based identification of the Hippo pathway for promoting fibrotic mesenchymal differentiation in systemic sclerosis

    No full text
    Systemic sclerosis (SSc) is a devastating autoimmune disease characterized by excessive production and accumulation of extracellular matrix, leading to fibrosis of skin and other internal organs. However, the main cellular participants in SSc skin fibrosis remain incompletely understood. Here using differentiation trajectories at a single cell level, we demonstrate a dual source of extracellular matrix deposition in SSc skin from both myofibroblasts and endothelial-to-mesenchymal-transitioning cells (EndoMT). We further define a central role of Hippo pathway effectors in differentiation and homeostasis of myofibroblast and EndoMT, respectively, and show that myofibroblasts and EndoMTs function as central communication hubs that drive key pro-fibrotic signaling pathways in SSc. Together, our data help characterize myofibroblast differentiation and EndoMT phenotypes in SSc skin, and hint that modulation of the Hippo pathway may contribute in reversing the pro-fibrotic phenotypes in myofibroblasts and EndoMTs.http://deepblue.lib.umich.edu/bitstream/2027.42/192258/2/Systems-based identification of the Hippo pathway for promoting fibrotic mesenchymal differentiation in systemic sclerosis.pdfAccepted versio

    Single cell and spatial sequencing define processes by which keratinocytes and fibroblasts amplify inflammatory responses in psoriasis.

    No full text
    The immunopathogenesis of psoriasis, a common chronic inflammatory disease of the skin, is incompletely understood. Here we demonstrate, using a combination of single cell and spatial RNA sequencing, IL-36 dependent amplification of IL-17A and TNF inflammatory responses in the absence of neutrophil proteases, which primarily occur within the supraspinous layer of the psoriatic epidermis. We further show that a subset of SFRP2 &lt;sup&gt;+&lt;/sup&gt; fibroblasts in psoriasis contribute to amplification of the immune network through transition to a pro-inflammatory state. The SFRP2 &lt;sup&gt;+&lt;/sup&gt; fibroblast communication network involves production of CCL13, CCL19 and CXCL12, connected by ligand-receptor interactions to other spatially proximate cell types: CCR2 &lt;sup&gt;+&lt;/sup&gt; myeloid cells, CCR7 &lt;sup&gt;+&lt;/sup&gt; LAMP3 &lt;sup&gt;+&lt;/sup&gt; dendritic cells, and CXCR4 expressed on both CD8 &lt;sup&gt;+&lt;/sup&gt; Tc17 cells and keratinocytes, respectively. The SFRP2 &lt;sup&gt;+&lt;/sup&gt; fibroblasts also express cathepsin S, further amplifying inflammatory responses by activating IL-36G in keratinocytes. These data provide an in-depth view of psoriasis pathogenesis, which expands our understanding of the critical cellular participants to include inflammatory fibroblasts and their cellular interactions

    Contribution of plasma cells and B cells to hidradenitis suppurativa pathogenesis

    Get PDF
    Hidradenitis suppurativa (HS) is a debilitating chronic inflammatory skin disease characterized by chronic abscess formation and development of multiple draining sinus tracts in the groin, axillae, and perineum. Using proteomic and transcriptomic approaches, we characterized the inflammatory responses in HS in depth, revealing immune responses centered on IFN-γ, IL-36, and TNF, with lesser contribution from IL-17A. We further identified B cells and plasma cells, with associated increases in immunoglobulin production and complement activation, as pivotal players in HS pathogenesis, with Bruton’s tyrosine kinase (BTK) and spleen tyrosine kinase (SYK) pathway activation as a central signal transduction network in HS. These data provide preclinical evidence to accelerate the path toward clinical trials targeting BTK and SYK signaling in moderate-to-severe HS
    corecore