1,169 research outputs found
Study of an engine flow diverter system for a large scale ejector powered aircraft model
Requirements were established for a conceptual design study to analyze and design an engine flow diverter system and to include accommodations for an ejector system in an existing 3/4 scale fighter model equipped with YJ-79 engines. Model constraints were identified and cost-effective limited modification was proposed to accept the ejectors, ducting and flow diverter valves. Complete system performance was calculated and a versatile computer program capable of analyzing any ejector system was developed
An in vitro model of impaction during hip arthroplasty
Impaction is required to properly seat press-fit implants and ensure initial implant stability and long term bone ingrowth, however excessive impaction or press-fit presents a high fracture risk in the acetabulum and femur. Current in-vitro impaction testing methods do not replicate the compliance of the soft tissues surrounding the hip, a factor that may be important in fracture and force prediction. This study presents the measurement of compliance of the soft tissues supporting the hip during impaction in operative conditions, and replicates these in vitro. Hip replacements were carried out on 4 full body cadavers while impact force traces and acetabular/femoral displacement were measured. Compliance was then simulated computationally using a Voigt model. These data were subsequently used to inform the design of a representative in-vitro drop rig. Effective masses of 19.7 kg and 12.7 kg, spring stiffnesses of 8.0 kN/m and 4.1 kN/m and dashpot coefficients of 595 N s/m and 322 N s/m were calculated for the acetabular and femoral soft tissues respectively. A good agreement between cadaveric and in-vitro peak displacement and rise time during impact is found. Such an in-vitro setup is of use during laboratory testing, simulation or even surgical training
Portable HEPA Filtration Successfully Augments Natural-Ventilation-Mediated Airborne Particle Clearance in a Legacy Design Hospital Ward
As the severe acute respiratory syndrome coronavirus-2 pandemic has proceeded, ventilation has been recognized increasingly as an important tool in infection control. Many hospitals in Ireland and the UK do not have mechanical ventilation and depend on natural ventilation. The effectiveness of natural ventilation varies with atmospheric conditions and building design. In a challenge test of a legacy design ward, this study showed that portable air filtration significantly increased the clearance of pollutant aerosols of respirable size compared with natural ventilation, and reduced spatial variation in particle persistence. A combination of natural ventilation and portable air filtration is significantly more effective for particle clearance than either intervention alone
Polymorphism in NEDD4L Is Associated with Increased Salt Sensitivity, Reduced Levels of P-renin and Increased Levels of Nt-proANP
OBJECTIVE: Neuronal precursor cell expressed developmentally down-regulated 4-like (NEDD4L) is a regulator of the amiloride-sensitive epithelial sodium channel (ENaC), thus a candidate gene for salt sensitivity. Carriers of an intact NEDD4L C2-domain, encoded by the NEDD4L rs4149601 (G/A) GG genotype, together with the C-allele of the NEDD4L rs2288774 (C/T) polymorphism have previously been shown to have increased blood pressure. Our aim was to test if genetic variation in NEDD4L is associated with increased salt sensitivity. METHODS: 39 normotensive subjects were studied. The difference in 24-hour systolic blood pressure after four weeks on 150 mmol/day NaCl intake and four weeks on 50 mmol/day NaCl was defined as salt sensitivity. The rs4149601 and rs2288774 polymorphisms were genotyped using PCR-based techniques. RESULTS: Carriers of the rs4149601 GG-genotype together with the rs2288774 CC-genotype had significantly higher salt sensitivity (median, IQR) (18.0, 7.5–20.0 mmHg vs 6.0, 0.0–10.0 mmHg, P = 0.007) and lower plasma renin concentration (P-renin) (6.0, 2.0–9.5 mU/L vs 15.0, 9.0–24.0 mU/L, P = 0.005) as compared to non-carriers of these genotypes. In carriers of the rs4149601 GG-genotype together with the rs2288774 CC- or CT-genotype, as compared to non-carriers, salt sensitivity was (8.0, 6.0–18.0 mmHg vs 5.0, 0.0–10.0 mmHg, P = 0.07) and P-renin (9.0, 6.0–16.0 mU/L vs 15.0, 9.0–28.0 mU/L, P = 0.03). CONCLUSION: Genetic NEDD4L variation seems to affect salt sensitivity and P-renin in normotensive subjects, suggesting that genotyping of NEDD4L may be clinically useful in order to identify subjects who benefit from dietary salt restriction in the prevention of hypertension
Fate and transport of volatile organic compounds in glacial till and groundwater at an industrial site in Northern Ireland
Volatile organic compound (VOC) contamination of subsurface geological material and groundwater was discovered on the Nortel Monkstown industrial site, Belfast, Northern Ireland. The objectives of this study were to (1) investigate the characteristics of the geological material and its influences on contaminated groundwater flow across the site using borehole logs and hydrological evaluations, and (2) identify the contaminants and examine their distribution in the subsurface geological material and groundwater using chemical analysis. This report focuses on the eastern car park (ECP) which was a former storage area associated with trichloroethene (TCE) degreasing operations. This is where the greatest amount of volatile organic compounds (VOCs), particularly TCE, were detected. The study site is on a complex deposit of clayey glacial till with discontinuous coarser grained lenses, mainly silts, sands and gravel, which occur at 0.45-7.82 m below ground level (bgl). The lenses overall form an elongated formation that acts as a small unconfined shallow aquifer. There is a continuous low permeable stiff clayey till layer beneath the lenses that performs as an aquitard to the groundwater. Highest concentrations of VOCs, mainly TCE, in the geological material and groundwater are in these coarser lenses at similar to 4.5-7 m bgl. Highest TCE measurements at 390,000 mu g L-1 for groundwater and at 39,000 mu g kg(-1) at 5.7 m for geological material were in borehole GA19 in the coarse lens zone. It is assumed that TCE gained entrance to the subsurface near this borehole where the clayey till was thin to absent above coarse lenses which provided little retardation to the vertical migration of this dense non-aqueous phase liquid (DNAPL) into the groundwater. However, TCE is present in low concentrations in the geological material overlying the coarse lens zone. Additionally, VOCs appear to be associated with poorly drained layers and in peat < 3.0 m bgl in the ECP. Some indication of natural attenuation as VOCs degradation products vinyl chloride (VC) and dichloromethane (DCM) also occur on the site
- …