15 research outputs found

    Trial Watch: combination of tyrosine kinase inhibitors (TKIs) and immunotherapy

    No full text
    : The past decades witnessed the clinical employment of targeted therapies including but not limited to tyrosine kinase inhibitors (TKIs) that restrain a broad variety of pro-tumorigenic signals. TKIs can be categorized into (i) agents that directly target cancer cells, (ii) normalize angiogenesis or (iii) affect cells of the hematologic lineage. However, a clear distinction of TKIs based on this definition is limited by the fact that many TKIs designed to inhibit cancer cells have also effects on immune cells that are being discovered. Additionally, TKIs originally designed to target hematological cancers exhibit bioactivities on healthy cells of the same hematological lineage. TKIs have been described to improve immune recognition and cancer immunosurveillance, providing the scientific basis to combine TKIs with immunotherapy. Indeed, combination of TKIs with immunotherapy showed synergistic effects in preclinical models and clinical trials and some combinations of TKIs normalizing angiogenesis with immune checkpoint blocking antibodies have already been approved by the FDA for cancer therapy. However, the identification of appropriate drug combinations as well as optimal dosing and scheduling needs to be improved in order to obtain tangible progress in cancer care. This Trial Watch summarizes active clinical trials combining TKIs with various immunotherapeutic strategies to treat cancer patients

    Pharmacological inhibitors of anaplastic lymphoma kinase (ALK) induce immunogenic cell death through on-target effects

    No full text
    : Immunogenic cell death (ICD) is clinically relevant because cytotoxicants that kill malignant cells via ICD elicit anticancer immune responses that prolong the effects of chemotherapies beyond treatment discontinuation. ICD is characterized by a series of stereotyped changes that increase the immunogenicity of dying cells: exposure of calreticulin on the cell surface, release of ATP and high mobility group box 1 protein, as well as a type I interferon response. Here, we examined the possibility that inhibition of an oncogenic kinase, anaplastic lymphoma kinase (ALK), might trigger ICD in anaplastic large cell lymphoma (ALCL) in which ALK is activated due to a chromosomal translocation. Multiple lines of evidence plead in favor of specific ICD-inducing effects of crizotinib and ceritinib in ALK-dependent ALCL: (i) they induce ICD stigmata at pharmacologically relevant, low concentrations; (ii) can be mimicked in their ICD-inducing effects by ALK knockdown; (iii) lose their effects in the context of resistance-conferring ALK mutants; (iv) ICD-inducing effects are mimicked by inhibition of the signal transduction pathways operating downstream of ALK. When ceritinib-treated murine ALK-expressing ALCL cells were inoculated into the left flank of immunocompetent syngeneic mice, they induced an immune response that slowed down the growth of live ALCL cells implanted in the right flank. Although ceritinib induced a transient shrinkage of tumors in lymphoma-bearing mice, irrespective of their immunocompetence, relapses occurred more frequently in the context of immunodeficiency, reducing the effects of ceritinib on survival by approximately 50%. Complete cure only occurred in immunocompetent mice and conferred protection to rechallenge with the same ALK-expressing lymphoma but not with another unrelated lymphoma. Moreover, immunotherapy with PD-1 blockade tended to increase cure rates. Altogether, these results support the contention that specific ALK inhibition stimulates the immune system by inducing ICD in ALK-positive ALCL

    High sodium intake increases HCO 3

    No full text

    Quality of extended chilled canine semen after recombinant manganese superoxide dismutase (rmn sod) supplementation.

    No full text
    The aim of this study was to evaluate the quality of cooled canine semen processed with diluents containing a new isoforme of rMn SOD. Our results suggest that rMnSOD has a preserving effect on the quality of chilled dog spermatozoa

    Effect of sod (superoxide dismutase) protein supplementation in semen extenders on motility, viability, acrosome status and ERK (extracellular signal-regulated kinase) protein phosphorylation of chilled stallion spermatozoa

    No full text
    New studies are underway to find new methods for supporting longer storage of cooled stallion semen. It is known that high concentrations of reactive oxygen species (ROS) cause sperm pathology. The metalloprotein superoxide dismutase (SOD) is responsible for H2O2 and O2 production, by dismutation of superoxide radicals. The aim of this study is to assess the quality of chilled stallion semen processed with extenders containing SOD at different concentrations as antioxidant additives. A total of 80 ejaculates collected from 5 standardbred stallions was divided into 5 aliquots treated as: native semen (control 1); native semen diluted 1:3 with Kenney semen extender (control 2); spermatozoa diluted after centrifugation in extender without (control 3) or with SOD at 25 IU/ml (experimental 1) or 50IU/ml (experimental 2). Each sample was analyzed for motility, viability and acrosome status, immediately after semen preparation and again after storage at 5 °C for 24h, 48h and 72h. Acrosome integrity was evaluated by Chlortetracycline (CTC) and Fluorescent-labeled peanut lectin agglutinin (PNA-FITC conjugated staining). A proteomic approach of quantifying extracellular signal regulated kinase (ERK) was also evaluated as an indirect indicator of oxidative stress. In all samples sperm progressive motility and sperm acrosomal integrity showed a significant reduction between fresh and cooled spermatozoa at 24h, 48h and 72h. Quality parameters of sperm were significantly higher (Progressive Motility P0.01; Viability P0.001) in aliquots supplemented with SOD.ERKphosphorylation was statistically higher (P0.01) in aliquots without SOD. The Authors concluded that addition of SOD to semen extenders improves the quality of chilled equine semen and reduces ERK activation

    Early markers of Fabry disease revealed by proteomics

    No full text
    Fabry disease (FD) is an X-linked lysosomal storage disorder caused by a deficiency of the lysosomal hydrolase α-galactosidase A (α-GalA) that leads to the intra-lysosomal accumulation of globotriaosylceramide (Gb3) in various organ systems. As a consequence, a multisystems disorder develops, culminating in stroke, progressive renal and cardiac dysfunction. Enzyme replacement therapy (ERT) offers a specific treatment for patients affected by FD, though the monitoring of treatment is hindered by a lack of surrogate markers of response. Remarkably, due to the high heterogeneity of the Fabry phenotype, both diagnostic testing and treatment decisions are more challenging in females than in males; thus, reliable biomarkers for Fabry disease are needed, particularly for female patients. Here, we use a proteomic approach for the identification of disease-associated markers that can be used for the early diagnosis of FD as well as for monitoring the effectiveness of ERT. Our data show that the urinary proteome of Fabry naïve patients is different from that of normal subjects. In addition, biological pathways mainly affected by FD are related to immune response, inflammation, and energetic metabolism. In particular, the up-regulation of uromodulin, prostaglandin H2 d-isomerase and prosaposin in the urine of FD patients was demonstrated; these proteins might be involved in kidney damage at the tubular level, inflammation and immune response. Furthermore, comparing the expression of these proteins in Fabry patients before and after ERT treatment, a decrease of their concentration was observed, thus demonstrating the correlation between the identified markers and the effectiveness of the pharmacological treatment. © The Royal Society of Chemistry

    Artificial tethering of LC3 or p62 to organelles is not sufficient to trigger autophagy

    No full text
    The retention using selective hooks (RUSH) system allows to retain a target protein fused to green fluorescent protein (GFP) and a streptavidin-binding peptide (SBP) due to the interaction with a molar excess of streptavidin molecules (“hooks”) targeted to selected subcellular compartments. Supplementation of biotin competitively disrupts the interaction between the SBP moiety and streptavidin, liberating the chimeric target protein from its hooks, while addition of avidin causes the removal of biotin from the system and reestablishes the interaction. Based on this principle, we engineered two chimeric proteins involved in autophagy, namely microtubule-associated proteins 1A/1B light chain 3B (MAP1LC3B, best known as LC3) and sequestosome-1 (SQSTM1, best known as p62) to move them as SBP–GFP–LC3 and p62–SBP–GFP at will between the cytosol and two different organelles, the endoplasmic reticulum (ER) and the Golgi apparatus. Although both proteins were functional in thus far that SBP–GFP–LC3 and p62–SBP–GFP could recruit their endogenous binding partners, p62 and LC3, respectively, their enforced relocation to the ER or Golgi failed to induce organelle-specific autophagy. Hence, artificial tethering of LC3 or p62 to the surface of the ER and the Golgi is not sufficient to trigger autophagy

    The immunomodulatory protein SV-IV protects serum-deprived cells against apoptosis but not against G0/G1 arrest: possible implications for the survival of implanting embryo.

    No full text
    Serum deprivation induced in human lymphoblastoid Raji cells oxidative stress-associated apoptotic death and G0/G1 cell cycle arrest. Addition into culture medium of the immunomodulatory protein Seminal vesicle protein 4 (SV-IV) protected these cells against apoptosis but not against cycle arrest. The antiapoptotic activity was related to: (1) decrease of endocellular reactive Oxygen species (ROS) (2) increase of mRNAs encoding anti-oxidant enzymes (catalase, G6PD) and antiapoptotic proteins (survivin, cox-1, Hsp70, c-Fos); (3) decrease of mRNAs encoding proapoptotic proteins (c-myc, Bax, caspase-3, Apaf-1). The biochemical changes underlaying these effects were probably induced by a protein tyrosine kinase (PTK) activity triggered by the binding of SV-IV to its putative plasma membrane receptors. The ineffectiveness of SV-IV to abrogate the cycle arrest was accounted for by its downregulating effects on D1,3/E G1-cyclins and CdK2/4 gene expression, ppRb/pRb ratio, and intracellular ROS concentration. In conclusion, these experiments: (1) prove that SV-IV acts as a cell survival factor; (2) suggest the involvement of a PTK in SV-IV signaling; (3) point to cell cycle-linked enzyme inhibition as responsible for cycle arrest; (4) provide a model to dissect the cycle arrest and apoptosis induced by serum withdrawal; (5) imply a possible role of SV-IV in the survival of hemiallogenic implanting embryos
    corecore