90 research outputs found

    The research program of the Liquid Scintillation Detector (LSD) in the Mont Blanc Laboratory

    Get PDF
    A massive (90 tons) liquid scintillation detector (LSD) has been running since October 1984 in the Mont Blanc Laboratory at a depth of 5,200 hg/sq cm of standard rock. The research program of the experiment covers a variety of topics in particle physics and astrophysics. The performance of the detector, the main fields of research are presented and the preliminary results are discussed

    Molecular genetic characteristics of Darevskia portschinskii lizard populations based on microsatellite markers analysis

    Get PDF
    The Caucasian rock lizard species Darevskia portschinskii is one of the bisexual species participating in interspecific hybridisation as the paternal ancestor with the maternal ancestors D. mixta and D. raddei resulting in the successful formation of the parthenogenetic D. dahli and D. rostombekowi, respectively. Populations of D. portschinskii have been previously divided into two subspecies, D. p. portschinskii and D. p. nigrita according to their geographical distribution and the morphological data, but they have not been characterised genetically. Here, we used ten microsatellite markers to determine the genetic structure of the D. portschinskii populations. The utility of the developed microsatellite markers for investigating the genetic variability within and among populations with a heterogeneous spatial distribution was demonstrated. Our results showed that the intra- and interspecific differentiation of the studied populations were consistent with the morphological data on the subspecies status of the D. p. portschinskii and D. p. nigrita populations. A potential applicability of the developed microsatellite markers to study genetic diversity of Darevskia species and subspecies complexes is suggested

    Dynamics of Gaseous Disks in a Non-axisymmetric Dark Halo

    Full text link
    The dynamics of a galactic disk in a non-axisymmetric (triaxial) dark halo is studied in detail using high-resolution, numerical, hydrodynamical models. A long-lived, two-armed spiral pattern is generated for a wide range of parameters. The spiral structure is global, and the number of turns can be two or three, depending on the model parameters. The morphology and kinematics of the spiral pattern are studied as functions of the halo and disk parameters. The spiral structure rotates slowly, and its angular velocity varies quasi-periodically. Models with differing relative halo masses, halo semi-axis ratios, distributions of matter in the disk, Mach numbers in the gaseous component, and angular rotational velocities of their halos are considered.Comment: 22 pages, 11 figure

    Gravitational stability and dynamical overheating of stellar disks of galaxies

    Full text link
    We use the marginal stability condition for galactic disks and the stellar velocity dispersion data published by different authors to place upper limits on the disk local surface density at two radial scalelengths R=2hR=2h. Extrapolating these estimates, we constrain the total mass of the disks and compare these estimates to those based on the photometry and color of stellar populations. The comparison reveals that the stellar disks of most of spiral galaxies in our sample cannot be substantially overheated and are therefore unlikely to have experienced a significant merging event in their history. The same conclusion applies to some, but not all of the S0 galaxies we consider. However, a substantial part of the early type galaxies do show the stellar velocity dispersion well in excess of the gravitational stability threshold suggesting a major merger event in the past. We find dynamically overheated disks among both seemingly isolated galaxies and those forming pairs. The ratio of the marginal stability disk mass estimate to the total galaxy mass within four radial scalelengths remains within a range of 0.4---0.8. We see no evidence for a noticeable running of this ratio with either the morphological type or color index.Comment: 25 pages, 5 figures, accepted to Astronomy Letter

    Control of star formation by supersonic turbulence

    Full text link
    Understanding the formation of stars in galaxies is central to much of modern astrophysics. For several decades it has been thought that stellar birth is primarily controlled by the interplay between gravity and magnetostatic support, modulated by ambipolar diffusion. Recently, however, both observational and numerical work has begun to suggest that support by supersonic turbulence rather than magnetic fields controls star formation. In this review we outline a new theory of star formation relying on the control by turbulence. We demonstrate that although supersonic turbulence can provide global support, it nevertheless produces density enhancements that allow local collapse. Inefficient, isolated star formation is a hallmark of turbulent support, while efficient, clustered star formation occurs in its absence. The consequences of this theory are then explored for both local star formation and galactic scale star formation. (ABSTRACT ABBREVIATED)Comment: Invited review for "Reviews of Modern Physics", 87 pages including 28 figures, in pres

    Nurses' perceptions of aids and obstacles to the provision of optimal end of life care in ICU

    Get PDF
    Contains fulltext : 172380.pdf (publisher's version ) (Open Access

    Amplitude Estimate of the Radio Signal with Unknown Duration and Initial Phase

    No full text
    Abstract Quasi-likelihood and maximum likelihood estimate algorithms of the amplitude of a radio signal with free-form envelope and unknown duration and initial phase are synthesized. Characteristics of the synthesized algorithms are found. The comparison of the accuracy of amplitude estimates is carried out. Keywords: radio signal with free-form envelope, estimate of amplitude, unknown duration and phase, amplitude estimate characteristics 5518 A.P. Trifonov et al
    corecore