2,249 research outputs found

    Influence of the structural modulations and the Chain-ladder interaction in the Sr_14−xCa_xCu_24O_41Sr\_{14-x}Ca\_{x}Cu\_{24}O\_{41} compounds

    Full text link
    We studied the effects of the incommensurate structural modulations on the ladder subsystem of the Sr_14−xCa_xCu_24O_41Sr\_{14-x}Ca\_{x}Cu\_{24}O\_{41} family of compounds using ab-initio explicitly-correlated calculations. From these calculations we derived t−Jt-J model as a function of the fourth crystallographic coordinate τ\tau describing the incommensurate modulations. It was found that in the highly calcium-doped system, the on-site orbital energies are strongly modulated along the ladder legs. On the contrary the two sites of the ladder rungs are iso-energetic and the holes are thus expected to be delocalized on the rungs. Chain-ladder interactions were also evaluated and found to be very negligible. The ladder superconductivity model for these systems is discussed in the light of the present results.Comment: 8 octobre 200

    Jordanian Quantum Algebra Uh(sl(N)){\cal U}_{\sf h}(sl(N)) via Contraction Method and Mapping

    Full text link
    Using the contraction procedure introduced by us in Ref. \cite{ACC2}, we construct, in the first part of the present letter, the Jordanian quantum Hopf algebra Uh(sl(3)){\cal U}_{\sf h}(sl(3)) which has a remarkably simple coalgebraic structure and contains the Jordanian Hopf algebra Uh(sl(2)){\cal U}_{\sf h}(sl(2)), obtained by Ohn, as a subalgebra. A nonlinear map between Uh(sl(3)){\cal U}_{\sf h}(sl(3)) and the classical sl(3)sl(3) algebra is then established. In the second part, we give the higher dimensional Jordanian algebras Uh(sl(N)){\cal U}_{\sf h}(sl(N)) for all NN. The Universal Rh{\cal R}_{\sf h}-matrix of Uh(sl(N)){\cal U}_{\sf h} (sl(N)) is also given.Comment: 17 pages, Late

    Regularly alternating spin-1/2 anisotropic XY chains: The ground-state and thermodynamic properties

    Full text link
    Using the Jordan-Wigner transformation and continued fractions we calculate rigorously the thermodynamic quantities for the spin-1/2 transverse Ising chain with periodically varying intersite interactions and/or on-site fields. We consider in detail the properties of the chains having a period of the transverse field modulation equal to 3. The regularly alternating transverse Ising chain exhibits several quantum phase transition points, where the number of transition points for a given period of alternation strongly depends on the specific set of the Hamiltonian parameters. The critical behavior in most cases is the same as for the uniform chain. However, for certain sets of the Hamiltonian parameters the critical behavior may be changed and weak singularities in the ground-state quantities appear. Due to the regular alternation of the Hamiltonian parameters the transverse Ising chain may exhibit plateau-like steps in the zero-temperature dependence of the transverse magnetization vs. transverse field and many-peak temperature profiles of the specific heat. We compare the ground-state properties of regularly alternating transverse Ising and transverse XX chains and of regularly alternating quantum and classical chains. Making use of the corresponding unitary transformations we extend the elaborated approach to the study of thermodynamics of regularly alternating spin-1/2 anisotropic XY chains without field. We use the exact expression for the ground-state energy of such a chain of period 2 to discuss how the exchange interaction anisotropy destroys the spin-Peierls dimerized phase

    Duality for Exotic Bialgebras

    Full text link
    In the classification of Hietarinta, three triangular 4×44\times 4 RR-matrices lead, via the FRT formalism, to matrix bialgebras which are not deformations of the trivial one. In this paper, we find the bialgebras which are in duality with these three exotic matrix bialgebras. We note that the L−TL-T duality of FRT is not sufficient for the construction of the bialgebras in duality. We find also the quantum planes corresponding to these bialgebras both by the Wess-Zumino R-matrix method and by Manin's method.Comment: 25 pages, LaTeX2e, using packages: cite, amsfonts, amsmath, subeq

    Formation of plasma around a small meteoroid: 1. Kinetic theory

    Full text link
    This article is a companion to Dimant and Oppenheim [2017] https://doi.org/10.1002/2017JA023963.This paper calculates the spatial distribution of the plasma responsible for radar head echoes by applying the kinetic theory developed in the companion paper. This results in a set of analytic expressions for the plasma density as a function of distance from the meteoroid. It shows that at distances less than a collisional mean free path from the meteoroid surface, the plasma density drops in proportion to 1/R where R is the distance from the meteoroid center; and, at distances much longer than the mean‐free‐path behind the meteoroid, the density diminishes at a rate proportional to 1/R2. The results of this paper should be used for modeling and analysis of radar head echoes.This work was supported by NSF grant AGS-1244842. (AGS-1244842 - NSF

    The qq-boson-fermion realizations of quantum suprealgebra Uq(gl(2/1))U_q(gl(2/1))

    Full text link
    We show that our construction of realizations for Lie algebras and quantum algebras can be generalized to quantum superalgebras, too. We study an example of quantum superalgebra Uq(gl(2/1))U_q(gl(2/1)) and give the boson-fermion realization with respect to one pair od q-deformed boson operator and 2 pairs of fermions.Comment: 8 page

    Path Integral Approach to Strongly Nonlinear Composite

    Full text link
    We study strongly nonlinear disordered media using a functional method. We solve exactly the problem of a nonlinear impurity in a linear host and we obtain a Bruggeman-like formula for the effective nonlinear susceptibility. This formula reduces to the usual Bruggeman effective medium approximation in the linear case and has the following features: (i) It reproduces the weak contrast expansion to the second order and (ii) the effective medium exponent near the percolation threshold are s=1s=1, t=1+Îșt=1+\kappa, where Îș\kappa is the nonlinearity exponent. Finally, we give analytical expressions for previously numerically calculated quantities.Comment: 4 pages, 1 figure, to appear in Phys. Rev.

    Plastic localization phenomena in a Mn-alloyed austenitic steel

    Get PDF
    A 0.5 wt pct C, 22 wt pct Mn austenitic steel, recently proposed for fabricating automotive body structures by cold sheet forming, exhibits plastic localizations (PLs) during uniaxial tensile tests, yet showing a favorable overall strength and ductility. No localization happens during biaxial Erichsen cupping tests. Full-thickness tensile and Erichsen specimens, cut from as-produced steel sheets, were polished and tested at different strain rates. During the tensile tests, the PL phenomena consist first of macroscopic deformation bands traveling along the tensile axis, and then of a series of successive stationary deformation bands, each adjacent to the preceding ones; both types of bands involve the full specimen width and yield a macroscopically observable surface relief. No comparable surface relief was observed during the standard Erichsen tests. Because the stress state is known to influence PL phenomena, reduced-width Erichsen tests were performed on polished sheet specimens, in order to explore the transition from biaxial to uniaxial loading; surface relief lines were observed on a 20-mm-wide specimen, but not on wider ones
    • 

    corecore