44 research outputs found

    Using Blockchain to support Data & Service Monetization

    Get PDF
    Two required features of a data monetization platform are query and retrieval of the metadata of the resources to be monetized. Centralized platforms rely on the maturity of traditional NoSQL database systems to support these features. These databases, for example, MongoDB allows for very efficient query and retrieval of data it stores. However, centralized platforms come with a bag of security and privacy concerns, making them not the ideal approach for a data monetization platform. On the other hand, most existing decentralized platforms are only partially decentralized. In this research, I developed Cowry, a platform for publishing metadata describing available resources (data or services), discovery of published metadata including fast search and filtering. My main contribution is a fully decentralized architecture that combines blockchain and traditional distributed database to gain additional features such as efficient query and retrieval of metadata stored on the blockchain

    An Autonomous Obstacle Avoidance Robot Using Ultrasonic Sensor

    No full text
    The use of robot and its enormous technological applications in today‟s era of industrial and intelligent systems has been seen to be highly impactful. The ability of these robots to move freely with minimal control is posing a real challenge. In this paper, the development of an autonomous obstacle avoidance robot using ultrasonic sensors is presented. In the design, the ultrasonic sensor serves as the eye of the robot to aid its autonomous movement. The robot is a wheeled type which can either be control using a dedicated control application (Android App) or autonomously. The control application was an added feature in case there is need to manually control the robot. The accuracy of the robot obstacle avoidance is highly encouraging scoring 87.5%, although, there are other challenges which are noted for further study. Keywords: Robotic, Obstacle avoidance, Autonomous system, Ultrasonic sensor

    Canonical correlation analysis for gene-based pleiotropy discovery.

    Get PDF
    Genome-wide association studies have identified a wealth of genetic variants involved in complex traits and multifactorial diseases. There is now considerable interest in testing variants for association with multiple phenotypes (pleiotropy) and for testing multiple variants for association with a single phenotype (gene-based association tests). Such approaches can increase statistical power by combining evidence for association over multiple phenotypes or genetic variants respectively. Canonical Correlation Analysis (CCA) measures the correlation between two sets of multidimensional variables, and thus offers the potential to combine these two approaches. To apply CCA, we must restrict the number of attributes relative to the number of samples. Hence we consider modules of genetic variation that can comprise a gene, a pathway or another biologically relevant grouping, and/or a set of phenotypes. In order to do this, we use an attribute selection strategy based on a binary genetic algorithm. Applied to a UK-based prospective cohort study of 4286 women (the British Women's Heart and Health Study), we find improved statistical power in the detection of previously reported genetic associations, and identify a number of novel pleiotropic associations between genetic variants and phenotypes. New discoveries include gene-based association of NSF with triglyceride levels and several genes (ACSM3, ERI2, IL18RAP, IL23RAP and NRG1) with left ventricular hypertrophy phenotypes. In multiple-phenotype analyses we find association of NRG1 with left ventricular hypertrophy phenotypes, fibrinogen and urea and pleiotropic relationships of F7 and F10 with Factor VII, Factor IX and cholesterol levels

    Intravenous glial growth factor 2 (GGF2) isoform of neuregulin-1β improves left ventricular function, gene and protein expression in rats after myocardial infarction.

    Get PDF
    Recombinant Neuregulin (NRG)-1β has multiple beneficial effects on cardiac myocytes in culture, and has potential as a clinical therapy for heart failure (HF). A number of factors may influence the effect of NRG-1β on cardiac function via ErbB receptor coupling and expression. We examined the effect of the NRG-1β isoform, glial growth factor 2 (GGF2), in rats with myocardial infarction (MI) and determined the impact of high-fat diet as well as chronicity of disease on GGF2 induced improvement in left ventricular systolic function. Potential mechanisms for GGF2 effects on the remote myocardium were explored using microarray and proteomic analysis.Rats with MI were randomized to receive vehicle, 0.625 mg/kg, or 3.25 mg/kg GGF2 in the presence and absence of high-fat feeding beginning at day 7 post-MI and continuing for 4 weeks. Residual left ventricular (LV) function was improved in both of the GGF2 treatment groups compared with the vehicle treated MI group at 4 weeks of treatment as assessed by echocardiography. High-fat diet did not prevent the effects of high dose GGF2. In experiments where treatment was delayed until 8 weeks after MI, high but not low dose GGF2 treatment was associated with improved systolic function. mRNA and protein expression analysis of remote left ventricular tissue revealed a number of changes in myocardial gene and protein expression altered by MI that were normalized by GGF2 treatment, many of which are involved in energy production.This study demonstrates that in rats with MI induced systolic dysfunction, GGF2 treatment improves cardiac function. There are differences in sensitivity of the myocardium to GGF2 effects when administered early vs. late post-MI that may be important to consider in the development of GGF2 in humans

    Molecular Mechanisms of Cardiovascular Damage Induced by Anti-HER-2 Therapies

    No full text
    In the last two decades, newer biological drugs have been designed in order to \u201ctarget\u201d specific proteins involved in cancer proliferation and overcome the increased risk of cardiovascular toxicity associated with \u201cbroad-spectrum\u201d classic chemotherapeutics. Unfortunately, these proteins are also important for the maintenance of cardiovascular homeostasis. The humanized anti-ErbB2 antibody, trastuzumab, is the prototypical biological drug first introduced in antineoplastic protocols for the treatment of ErbB2+ breast cancer. Indeed, not only is this protein overexpressed in several breast cancers, but also it plays a major role in the cardiovascular system in cell growth, including myocyte growth, and inhibition of apoptosis and can modulate the oxidative damage induced by anthracyclines. Hence, patients treated with trastuzumab developed systolic dysfunction, especially when administered with or shortly after doxorubicin
    corecore