22,166 research outputs found

    Witnessing the Growth of the Nearest Galaxy Cluster: Thermodynamics of the Virgo Cluster Outskirts

    Get PDF
    We present results from Suzaku Key Project observations of the Virgo Cluster, the nearest galaxy cluster to us, mapping its X-ray properties along four long `arms' extending beyond the virial radius. The entropy profiles along all four azimuths increase with radius, then level out beyond 0.5r2000.5r_{200}, while the average pressure at large radii exceeds Planck Sunyaev-Zel'dovich measurements. These results can be explained by enhanced gas density fluctuations (clumping) in the cluster's outskirts. Using a standard Navarro, Frenk and White (1997) model, we estimate a virial mass, radius, and concentration parameter of M200=1.05±0.02×1014M_{200}=1.05\pm0.02\times10^{14} M⊙_\odot, r200=974.1±5.7r_{200}=974.1\pm5.7 kpc, and c=8.8±0.2c = 8.8 \pm0.2, respectively. The inferred cumulative baryon fraction exceeds the cosmic mean at r∼r200r\sim r_{200} along the major axis, suggesting enhanced gas clumping possibly sourced by a candidate large-scale structure filament along the north-south direction. The Suzaku data reveal a large-scale sloshing pattern, with two new cold fronts detected at radii of 233 kpc and 280 kpc along the western and southern arms, respectively. Two high-temperature regions are also identified 1 Mpc towards the south and 605 kpc towards the west of M87, likely representing shocks associated with the ongoing cluster growth. Although systematic uncertainties in measuring the metallicity for low temperature plasma remain, the data at large radii appear consistent with a uniform metal distribution on scales of ∼90×180\sim 90\times180 kpc and larger, providing additional support for the early chemical enrichment scenario driven by galactic winds at redshifts of 2-3.Comment: submitted to MNRA

    A uniform metallicity in the outskirts of massive, nearby galaxy clusters

    Get PDF
    Suzaku measurements of a homogeneous metal distribution of Z∼0.3Z\sim0.3 Solar in the outskirts of the nearby Perseus cluster suggest that chemical elements were deposited and mixed into the intergalactic medium before clusters formed, likely over 10 billion years ago. A key prediction of this early enrichment scenario is that the intracluster medium in all massive clusters should be uniformly enriched to a similar level. Here, we confirm this prediction by determining the iron abundances in the outskirts (r>0.25r200r>0.25r_{200}) of a sample of ten other nearby galaxy clusters observed with Suzaku for which robust measurements based on the Fe-K lines can be made. Across our sample the iron abundances are consistent with a constant value, ZFe=0.316±0.012Z_{\rm Fe}=0.316\pm0.012 Solar (χ2=28.85\chi^2=28.85 for 25 degrees of freedom). This is remarkably similar to the measurements for the Perseus cluster of ZFe=0.314±0.012Z_{\rm Fe}=0.314\pm0.012 Solar, using the Solar abundance scale of Asplund et al. (2009).Comment: accepted for publication in MNRA

    A Uniform Contribution of Core-Collapse and Type Ia Supernovae to the Chemical Enrichment Pattern in the Outskirts of the Virgo Cluster

    Full text link
    We present the first measurements of the abundances of α\alpha-elements (Mg, Si, and S) extending out to beyond the virial radius of a cluster of galaxies. Our results, based on Suzaku Key Project observations of the Virgo Cluster, show that the chemical composition of the intra-cluster medium is consistent with being constant on large scales, with a flat distribution of the Si/Fe, S/Fe, and Mg/Fe ratios as a function of radius and azimuth out to 1.4 Mpc (1.3 r200r_{200}). Chemical enrichment of the intergalactic medium due solely to core collapse supernovae (SNcc) is excluded with very high significance; instead, the measured metal abundance ratios are generally consistent with the Solar value. The uniform metal abundance ratios observed today are likely the result of an early phase of enrichment and mixing, with both SNcc and type Ia supernovae (SNIa) contributing to the metal budget during the period of peak star formation activity at redshifts of 2-3. We estimate the ratio between the number of SNIa and the total number of supernovae enriching the intergalactic medium to be between 12-37%, broadly consistent with the metal abundance patterns in our own Galaxy or with the SNIa contribution estimated for the cluster cores.Comment: accepted for publication in ApJ

    Coherent phonon scattering effects on thermal transport in thin semiconductor nanowires

    Full text link
    The thermal conductance by phonons of a quasi-one-dimensional solid with isotope or defect scattering is studied using the Landauer formalism for thermal transport. The conductance shows a crossover from localized to Ohmic behavior, just as for electrons, but the nature of this crossover is modified by delocalization of phonons at low frequency. A scalable numerical transfer-matrix technique is developed and applied to model quasi-one-dimensional systems in order to confirm simple analytic predictions. We argue that existing thermal conductivity data on semiconductor nanowires, showing an unexpected linear dependence, can be understood through a model that combines incoherent surface scattering for short-wavelength phonons with nearly ballistic long-wavelength phonons. It is also found that even when strong phonon localization effects would be observed if defects are distributed throughout the wire, localization effects are much weaker when defects are localized at the boundary, as in current experiments.Comment: 13 page

    BEC-BCS crossover in a cold and magnetized two color NJL model

    Get PDF
    The BEC-BCS crossover for a NJL model with diquark interactions is studied in the presence of an external magnetic field. Particular attention is paid to different regularization schemes used in the literature. A thorough comparison of results is performed for the case of a cold and magnetized two-color NJL model. According to our results, the critical chemical potential for the BEC transition exhibits a clear inverse magnetic catalysis effect for magnetic fields in the range 1≲eB/mπ2≲20 1 \lesssim eB/m_\pi^2 \lesssim 20 . As for the BEC-BCS crossover, the corresponding critical chemical potential is very weakly sensitive to magnetic fields up to eB∼9 mπ2eB \sim 9\ m_\pi^2, showing a much smaller inverse magnetic catalysis as compared to the BEC transition, and displays a strong magnetic catalysis from this point on.Comment: 15 pages, 8 figures; v2 PRD versio

    Green-function method in the theory of ultraslow electromagnetic waves in an ideal gas with Bose-Einstein condensates

    Full text link
    We propose a microscopic approach describing the interaction of an ideal gas of hydrogenlike atoms with a weak electromagnetic field. This approach is based on the Green-function formalism and an approximate formulation of the method of second quantization for quantum many-particle systems in the presence of bound states of particles. The dependencies of the propagation velocity and damping rate of electromagnetic pulses on the microscopic characteristics of the system are studied for a gas of hydrogenlike atoms. For a Bose-Einstein condensate of alkali-metal atoms we find the conditions when the electromagnetic waves of both the optical and microwave regions are slowed. In the framework of the proposed approach, the influence of an external homogeneous and static magnetic field on the slowing phenomenon is studied.Comment: 15 pages, 6 figure

    Phonon `notches' in a-b -plane optical conductivity of high-Tc superconductors

    Full text link
    It is shown that a correlation between the positions of the cc-axis longitudinal optic (LOcLO_c) phonons and ``notch''-like structures in the aa-bb plane conductivity of high-TcT_c superconductors results from phonon-mediated interaction between electrons in different layers. It is found that the relative size of the notches depends on λph(Ωph/γph)\lambda_{ph}(\Omega_{ph}/\gamma_{ph}), where λph\lambda_{ph}, Ωph\Omega_{ph} and γph\gamma_{ph} are the effective coupling strength, the frequency and the width of the optical phonon which is responsible for the notch. Even for λph≈0.01\lambda_{ph}\approx 0.01 the effect can be large if the phonon is very sharp.Comment: 5 pages, REVTeX, 4 uuencoded figure

    Rabi oscillations under ultrafast excitation of graphene

    Full text link
    We study coherent nonlinear dynamics of carriers under ultrafast interband excitation of an intrinsic graphene. The Rabi oscillations of response appear with increasing of pumping intensity. The photoexcited distribution is calculated versus time and energy taking into account the effects of energy relaxation and dephasing. Spectral and temporal dependencies of the response on a probe radiation (transmission and reflection coefficients) are considered for different pumping intensities and the Rabi oscillations versus time and intensity are analyzed.Comment: 6 pages, 6 figure

    Spectroscopic observation of the rotational Doppler effect

    Get PDF
    We report on the first spectroscopic observation of the rotational Doppler shift associated with light beams carrying orbital angular momentum. The effect is evidenced as the broadening of a Hanle/EIT coherence resonance on Rb vapor when the two incident Laguerre-Gaussian laser beams have opposite topological charges. The observations closely agree with theoretical predictions.Comment: Submited to Physical Review Lette
    • …
    corecore