40 research outputs found

    Cognitive effects of transcranial direct current stimulation combined with working memory training in fibromyalgia: a randomized clinical trial

    Get PDF
    Cognitive dysfunction in fibromyalgia has been reported, especially memory. Anodal transcranial direct current stimulation (tDCS) over the dorsolateral prefrontal cortex (DLPFC) has been effective in enhancing this function. We tested the effects of eight sessions of tDCS and cognitive training on immediate and delayed memory, verbal fluency and working memory and its association with brain-derived neurotrophic factor (BDNF) levels. Forty females with fibromyalgia were randomized to receive eight sessions of active or sham tDCS. Anodal stimulation (2 mA) was applied over the DLPFC and online combined with a working memory training (WMT) for 20 minutes. Pre and post-treatment neurocognitive tests were administered. Data analysis on deltas considering years of education and BDNF as covariates, indicated active-tDCS + WMT significantly increased immediate memory indexed by Rey Auditory Verbal Learning Test score when compared to sham. This effect was dependent on basal BDNF levels. In addition, the model showed active stimulation increased orthographic and semantic verbal fluency scores (Controlled Oral Word Association Test) and short-term memory (Forward Digit Span). The combination of both techniques seemed to produce effects on specific cognitive functions related to short-term and long-term episodic memory and executive functions, which has clinical relevance for top-down treatment approaches in FM.financiamento: This research was supported by grants and material support from the following Brazilian agencies: Committee for the Development of Higher Education Personnel - CAPES - PNPD/CAPES and material support. National Council for Scientific and Technological Development - CNPq (grants to Dr. I.L.S. Torres, Dr. W. Caumo). Postgraduate Program in Medical Sciences at the School of Medicine of the Federal University of Rio Grande do Sul (material support). Postgraduate Research Group at the Hospital de Clinicas de Porto Alegre - FIPE HCPA (material support). Foundations for Support of Research at Rio Grande do Sul (FAPERGS) (material support)

    Whole-Genome Sequencing of Sake Yeast Saccharomyces cerevisiae Kyokai no. 7

    Get PDF
    The term ‘sake yeast’ is generally used to indicate the Saccharomyces cerevisiae strains that possess characteristics distinct from others including the laboratory strain S288C and are well suited for sake brewery. Here, we report the draft whole-genome shotgun sequence of a commonly used diploid sake yeast strain, Kyokai no. 7 (K7). The assembled sequence of K7 was nearly identical to that of the S288C, except for several subtelomeric polymorphisms and two large inversions in K7. A survey of heterozygous bases between the homologous chromosomes revealed the presence of mosaic-like uneven distribution of heterozygosity in K7. The distribution patterns appeared to have resulted from repeated losses of heterozygosity in the ancestral lineage of K7. Analysis of genes revealed the presence of both K7-acquired and K7-lost genes, in addition to numerous others with segmentations and terminal discrepancies in comparison with those of S288C. The distribution of Ty element also largely differed in the two strains. Interestingly, two regions in chromosomes I and VII of S288C have apparently been replaced by Ty elements in K7. Sequence comparisons suggest that these gene conversions were caused by cDNA-mediated recombination of Ty elements. The present study advances our understanding of the functional and evolutionary genomics of the sake yeast

    A MODEST review

    Get PDF
    We present an account of the state of the art in the fields explored by the research community invested in 'Modeling and Observing DEnse STellar systems'. For this purpose, we take as a basis the activities of the MODEST-17 conference, which was held at Charles University, Prague, in September 2017. Reviewed topics include recent advances in fundamental stellar dynamics, numerical methods for the solution of the gravitational N-body problem, formation and evolution of young and old star clusters and galactic nuclei, their elusive stellar populations, planetary systems, and exotic compact objects, with timely attention to black holes of different classes of mass and their role as sources of gravitational waves. Such a breadth of topics reflects the growing role played by collisional stellar dynamics in numerous areas of modern astrophysics. Indeed, in the next decade, many revolutionary instruments will enable the derivation of positions and velocities of individual stars in the Milky Way and its satellites and will detect signals from a range of astrophysical sources in different portions of the electromagnetic and gravitational spectrum, with an unprecedented sensitivity. On the one hand, this wealth of data will allow us to address a number of long-standing open questions in star cluster studies; on the other hand, many unexpected properties of these systems will come to light, stimulating further progress of our understanding of their formation and evolution.Comment: 42 pages; accepted for publication in 'Computational Astrophysics and Cosmology'. We are much grateful to the organisers of the MODEST-17 conference (Charles University, Prague, September 2017). We acknowledge the input provided by all MODEST-17 participants, and, more generally, by the members of the MODEST communit

    Pattern formation outside of equilibrium

    Full text link

    Regularization method for large eddy simulations of shock-turbulence interactions

    No full text
    The rapid change in scales over a shock has the potential to introduce unique difficulties in Large Eddy Simulations (LES) of compressible shock-turbulence flows if the governing model does not sufficiently capture the spectral distribution of energy in the upstream turbulence. A method for the regularization of LES of shock-turbulence interactions is presented which is constructed to enforce that the energy content in the highest resolved wavenumbers decays as k^(−5/3), and is computed locally in physical-space at low computational cost. The application of the regularization to an existing subgrid scale model is shown to remove high wavenumber errors while maintaining agreement with Direct Numerical Simulations (DNS) of forced and decaying isotropic turbulence. Linear interaction analysis is implemented to model the interaction of a shock with isotropic turbulence from LES. Comparisons to analytical models suggest that the regularization significantly improves the ability of the LES to predict amplifications in subgrid terms over the modeled shockwave. LES and DNS of decaying, modeled post shock turbulence are also considered, and inclusion of the regularization in shock-turbulence LES is shown to improve agreement with lower Reynolds number DNS

    Large eddy simulation investigation of the canonical shock–turbulence interaction

    No full text
    High resolution large eddy simulations (LES) are performed to study the interaction of a stationary shock with fully developed turbulent flow. Turbulent statistics downstream of the interaction are provided for a range of weakly compressible upstream turbulent Mach numbers M_t = 0.03−0.18, shock Mach numbers M_s = 1.2−3.0 and Taylor-based Reynolds numbers Re_λ = 20−2500. The LES displays minimal Reynolds number effects once an inertial range has developed for Re_λ > 100. The inertial range scales of the turbulence are shown to quickly return to isotropy, and downstream of sufficiently strong shocks this process generates a net transfer of energy from transverse into streamwise velocity fluctuations. The streamwise shock displacements are shown to approximately follow a k^(−11/3) decay with wavenumber as predicted by linear analysis. In conjunction with other statistics this suggests that the instantaneous interaction of the shock with the upstream turbulence proceeds in an approximately linear manner, but nonlinear effects immediately downstream of the shock significantly modify the flow even at the lowest considered turbulent Mach numbers

    Large eddy simulation investigation of the canonical shock–turbulence interaction

    No full text
    High resolution large eddy simulations (LES) are performed to study the interaction of a stationary shock with fully developed turbulent flow. Turbulent statistics downstream of the interaction are provided for a range of weakly compressible upstream turbulent Mach numbers M_t = 0.03−0.18, shock Mach numbers M_s = 1.2−3.0 and Taylor-based Reynolds numbers Re_λ = 20−2500. The LES displays minimal Reynolds number effects once an inertial range has developed for Re_λ > 100. The inertial range scales of the turbulence are shown to quickly return to isotropy, and downstream of sufficiently strong shocks this process generates a net transfer of energy from transverse into streamwise velocity fluctuations. The streamwise shock displacements are shown to approximately follow a k^(−11/3) decay with wavenumber as predicted by linear analysis. In conjunction with other statistics this suggests that the instantaneous interaction of the shock with the upstream turbulence proceeds in an approximately linear manner, but nonlinear effects immediately downstream of the shock significantly modify the flow even at the lowest considered turbulent Mach numbers
    corecore