349 research outputs found

    Bayesian inference of hydraulic properties in and around a white fir using a process-based ecohydrologic model

    Get PDF
    We present a parameter estimation study of the Soil-Tree-Atmosphere Continuum (STAC) model, a process-based model that simulates water flow through an individual tree and its surrounding root zone. Parameters are estimated to optimize the model fit to observations of sap flux, stem water potential, and soil water storage made for a white fir (Abies concolor) in the Sierra Nevada, California. Bayesian inference is applied with a likelihood function that considers temporal correlation of the model errors. Key vegetation properties are estimated, such as the tree\u27s root distribution, tolerance to drought, and hydraulic conductivity and retention functions. We find the model parameters are relatively non-identifiable when considering just soil water storage. Overall, by utilizing multiple processes (e.g. sap flow, stem water potential, and soil water storage) during the parameter estimation, we find the simulations of the soil and tree water properties to be more accurate when compared to observed data

    An Assessment of Initial Leaching Characteristics of Alkali-Borosilicate Glasses for Nuclear Waste Immobilization

    Get PDF
    Initial leaching characteristics of simulated nuclear waste immobilized in three alkali- borosilicate glasses (ABS-waste) were studied. The effects of matrix composition on the containment performance and degradation resistance measures were evaluated. Normalized release rates are in conformance with data reported in the literature. High Li and Mg loadings lead to the highest initial de-polymerization of sample ABS-waste (17) and contributed to its thermodynamic instability. Ca stabilizes non-bridging oxygen (NBO) and reduces the thermodynamic instability of the modified matrix. An exponential temporal change in the alteration thickness was noted for samples ABS-waste (17) and Modified Alkali-Borosilicate (MABS)-waste (20), whereas a linear temporal change was noted for sample ABS-waste (25). Leaching processes that contribute to the fractional release of all studied elements within the initial stage of glass corrosion were quantified and the main controlling leach process for each element was identified. As the waste loading increases, the contribution of the dissolution process to the overall fractional release of structural elements decreases by 43.44, 5.05, 38.07, and 52.99% for Si, B, Na, and Li respectively, and the presence of modifiers reduces this contribution for all the studied metalloids. The dissolution process plays an important role in controlling the release of Li and Cs, and this role is reduced by increasing the waste loading.</jats:p

    Identification of key parameters controlling demographically structured vegetation dynamics in a land surface model: CLM4.5(FATES)

    Get PDF
    Vegetation plays an important role in regulating global carbon cycles and is a key component of the Earth system models (ESMs) that aim to project Earth\u27s future climate. In the last decade, the vegetation component within ESMs has witnessed great progress from simple “big-leaf” approaches to demographically structured approaches, which have a better representation of plant size, canopy structure, and disturbances. These demographically structured vegetation models typically have a large number of input parameters, and sensitivity analysis is needed to quantify the impact of each parameter on the model outputs for a better understanding of model behavior. In this study, we conducted a comprehensive sensitivity analysis to diagnose the Community Land Model coupled to the Functionally Assembled Terrestrial Simulator, or CLM4.5(FATES). Specifically, we quantified the first- and second-order sensitivities of the model parameters to outputs that represent simulated growth and mortality as well as carbon fluxes and stocks for a tropical site with an extent of 1×1∘. While the photosynthetic capacity parameter (Vc,max25) is found to be important for simulated carbon stocks and fluxes, we also show the importance of carbon storage and allometry parameters, which determine survival and growth strategies within the model. The parameter sensitivity changes with different sizes of trees and climate conditions. The results of this study highlight the importance of understanding the dynamics of the next generation of demographically enabled vegetation models within ESMs to improve model parameterization and structure for better model fidelity

    Realization of a Tunable Artificial Atom at a Supercritically Charged Vacancy in Graphene

    Full text link
    The remarkable electronic properties of graphene have fueled the vision of a graphene-based platform for lighter, faster and smarter electronics and computing applications. One of the challenges is to devise ways to tailor its electronic properties and to control its charge carriers. Here we show that a single atom vacancy in graphene can stably host a local charge and that this charge can be gradually built up by applying voltage pulses with the tip of a scanning tunneling microscope (STM). The response of the conduction electrons in graphene to the local charge is monitored with scanning tunneling and Landau level spectroscopy, and compared to numerical simulations. As the charge is increased, its interaction with the conduction electrons undergoes a transition into a supercritical regime 6-11 where itinerant electrons are trapped in a sequence of quasi-bound states which resemble an artificial atom. The quasi-bound electron states are detected by a strong enhancement of the density of states (DOS) within a disc centered on the vacancy site which is surrounded by halo of hole states. We further show that the quasi-bound states at the vacancy site are gate tunable and that the trapping mechanism can be turned on and off, providing a new mechanism to control and guide electrons in grapheneComment: 18 pages and 5 figures plus 14 pages and 15 figures of supplementary information. Nature Physics advance online publication, Feb 22 (2016

    Ancient Migratory Events in the Middle East: New Clues from the Y-Chromosome Variation of Modern Iranians

    Get PDF
    Knowledge of high resolution Y-chromosome haplogroup diversification within Iran provides important geographic context regarding the spread and compartmentalization of male lineages in the Middle East and southwestern Asia. At present, the Iranian population is characterized by an extraordinary mix of different ethnic groups speaking a variety of Indo-Iranian, Semitic and Turkic languages. Despite these features, only few studies have investigated the multiethnic components of the Iranian gene pool. In this survey 938 Iranian male DNAs belonging to 15 ethnic groups from 14 Iranian provinces were analyzed for 84 Y-chromosome biallelic markers and 10 STRs. The results show an autochthonous but non-homogeneous ancient background mainly composed by J2a sub-clades with different external contributions. The phylogeography of the main haplogroups allowed identifying post-glacial and Neolithic expansions toward western Eurasia but also recent movements towards the Iranian region from western Eurasia (R1b-L23), Central Asia (Q-M25), Asia Minor (J2a-M92) and southern Mesopotamia (J1-Page08). In spite of the presence of important geographic barriers (Zagros and Alborz mountain ranges, and the Dasht-e Kavir and Dash-e Lut deserts) which may have limited gene flow, AMOVA analysis revealed that language, in addition to geography, has played an important role in shaping the nowadays Iranian gene pool. Overall, this study provides a portrait of the Y-chromosomal variation in Iran, useful for depicting a more comprehensive history of the peoples of this area as well as for reconstructing ancient migration routes. In addition, our results evidence the important role of the Iranian plateau as source and recipient of gene flow between culturally and genetically distinct population

    Nectar, humidity, honey bees (Apis mellifera) and varroa in summer: a theoretical thermofluid analysis of the fate of water vapour from honey ripening and its implications on the control of Varroa destructor

    Get PDF
    This theoretical thermofluid analysis investigates the relationships between honey production rate, nectar concentration and the parameters of entrance size, nest thermal conductance, brood nest humidity and the temperatures needed for nectar to honey conversion. It quantifies and shows that nest humidity is positively related to the amount, and water content of the nectar being desiccated into honey and negatively with respect to nest thermal conductance and entrance size. It is highly likely that honeybees, in temperate climates and in their natural home, with much smaller thermal conductance and entrance, can achieve higher humidities more easily and more frequently than in man-made hives. As a consequence, it is possible that Varroa destructor, a parasite implicated in the spread of pathogenic viruses and colony collapse, which loses fecundity at absolute humidities of 4.3 kPa (approx. 30 gm−3) and above, is impacted by the more frequent occurrence of higher humidities in these low conductance, small entrance nests. This study provides the theoretical basis for new avenues of research into the control of varroa, via the modification of beekeeping practices to help maintain higher hive humidities

    Development of paediatric quality of inpatient care indicators for low-income countries - A Delphi study

    Get PDF
    BACKGROUND: Indicators of quality of care for children in hospitals in low-income countries have been proposed, but information on their perceived validity and acceptability is lacking. METHODS: Potential indicators representing structural and process aspects of care for six common conditions were selected from existing, largely qualitative WHO assessment tools and guidelines. We employed the Delphi technique, which combines expert opinion and existing scientific information, to assess their perceived validity and acceptability. Panels of experts, one representing an international panel and one a national (Kenyan) panel, were asked to rate the indicators over 3 rounds and 2 rounds respectively according to a variety of attributes. RESULTS: Based on a pre-specified consensus criteria most of the indicators presented to the experts were accepted: 112/137(82%) and 94/133(71%) for the international and local panels respectively. For the other indicators there was no consensus; none were rejected. Most indicators were rated highly on link to outcomes, reliability, relevance, actionability and priority but rated more poorly on feasibility of data collection under routine conditions. There was moderate to substantial agreement between the two panels of experts. CONCLUSIONS: This Delphi study provided evidence for the perceived usefulness of most of a set of measures of quality of hospital care for children proposed for use in low-income countries. However, both international and local experts expressed concerns that data for many process-based indicators may not currently be available. The feasibility of widespread quality assessment and responsiveness of indicators to intervention should be examined as part of continued efforts to improve approaches to informative hospital quality assessment
    corecore