2,150 research outputs found

    Spectral statistics in chaotic systems with a point interaction

    Full text link
    We consider quantum systems with a chaotic classical limit that are perturbed by a point-like scatterer. The spectral form factor K(tau) for these systems is evaluated semiclassically in terms of periodic and diffractive orbits. It is shown for order tau^2 and tau^3 that off-diagonal contributions to the form factor which involve diffractive orbits cancel exactly the diagonal contributions from diffractive orbits, implying that the perturbation by the scatterer does not change the spectral statistic. We further show that parametric spectral statistics for these systems are universal for small changes of the strength of the scatterer.Comment: LaTeX, 21 pages, 7 figures, small corrections, new references adde

    Semiclassical expansion of parametric correlation functions of the quantum time delay

    Full text link
    We derive semiclassical periodic orbit expansions for a correlation function of the Wigner time delay. We consider the Fourier transform of the two-point correlation function, the form factor K(τ,x,y,M)K(\tau,x,y,M), that depends on the number of open channels MM, a non-symmetry breaking parameter xx, and a symmetry breaking parameter yy. Several terms in the Taylor expansion about τ=0\tau=0, which depend on all parameters, are shown to be identical to those obtained from Random Matrix Theory.Comment: 21 pages, no figure

    Geometrical theory of diffraction and spectral statistics

    Full text link
    We investigate the influence of diffraction on the statistics of energy levels in quantum systems with a chaotic classical limit. By applying the geometrical theory of diffraction we show that diffraction on singularities of the potential can lead to modifications in semiclassical approximations for spectral statistics that persist in the semiclassical limit 0\hbar \to 0. This result is obtained by deriving a classical sum rule for trajectories that connect two points in coordinate space.Comment: 14 pages, no figure, to appear in J. Phys.

    A generic C1C^1 map has no absolutely continuous invariant probability measure

    Get PDF
    Let MM be a smooth compact manifold (maybe with boundary, maybe disconnected) of any dimension d1d \ge 1. We consider the set of C1C^1 maps f:MMf:M\to M which have no absolutely continuous (with respect to Lebesgue) invariant probability measure. We show that this is a residual (dense Gδ)setintheG_\delta) set in the C^1$ topology. In the course of the proof, we need a generalization of the usual Rokhlin tower lemma to non-invariant measures. That result may be of independent interest.Comment: 12 page

    Form factor for large quantum graphs: evaluating orbits with time-reversal

    Full text link
    It has been shown that for a certain special type of quantum graphs the random-matrix form factor can be recovered to at least third order in the scaled time \tau using periodic-orbit theory. Two types of contributing pairs of orbits were identified, those which require time-reversal symmetry and those which do not. We present a new technique of dealing with contribution from the former type of orbits. The technique allows us to derive the third order term of the expansion for general graphs. Although the derivation is rather technical, the advantages of the technique are obvious: it makes the derivation tractable, it identifies explicitly the orbit configurations which give the correct contribution, it is more algorithmical and more system-independent, making possible future applications of the technique to systems other than quantum graphs.Comment: 25 pages, 14 figures, accepted to Waves in Random Media (special issue on Quantum Graphs and their Applications). Fixed typos, removed an overly restrictive condition (appendix), shortened introductory section

    Randomly incomplete spectra and intermediate statistics

    Full text link
    By randomly removing a fraction of levels from a given spectrum a model is constructed that describes a crossover from this spectrum to a Poisson spectrum. The formalism is applied to the transitions towards Poisson from random matrix theory (RMT) spectra and picket fence spectra. It is shown that the Fredholm determinant formalism of RMT extends naturally to describe incomplete RMT spectra.Comment: 9 pages, 2 figures. To appear in Physical Review

    Semiclassical Treatment of Diffraction in Billiard Systems with a Flux Line

    Full text link
    In billiard systems with a flux line semiclassical approximations for the density of states contain contributions from periodic orbits as well as from diffractive orbits that are scattered on the flux line. We derive a semiclassical approximation for diffractive orbits that are scattered once on a flux line. This approximation is uniformly valid for all scattering angles. The diffractive contributions are necessary in order that semiclassical approximations are continuous if the position of the flux line is changed.Comment: LaTeX, 17 pages, 4 figure

    Pulsar Magnetospheric Emission Mapping: Images and Implications of Polar-Cap Weather

    Get PDF
    The beautiful sequences of ``drifting'' subpulses observed in some radio pulsars have been regarded as among the most salient and potentially instructive characteristics of their emission, not least because they have appeared to represent a system of subbeams in motion within the emission zone of the star. Numerous studies of these ``drift'' sequences have been published, and a model of their generation and motion articulated long ago by Ruderman & Sutherland (1975); but efforts thus far have failed to establish an illuminating connection between the drift phemomenon and the actual sites of radio emission. Through a detailed analysis of a nearly coherent sequence of ``drifting'' pulses from pulsar B0943+10, we have in fact identified a system of subbeams circulating around the magnetic axis of the star. A mapping technique, involving a ``cartographic'' transform and its inverse, permits us to study the character of the polar-cap emission ``map'' and then to confirm that it, in turn, represents the observed pulse sequence. On this basis, we have been able to trace the physical origin of the ``drifting-subpulse'' emission to a stably rotating and remarkably organized configuration of emission columns, in turn traceable possibly to the magnetic polar-cap ``gap'' region envisioned by some theories.Comment: latex with five eps figure

    On the stability of periodic orbits in delay equations with large delay

    Get PDF
    We prove a necessary and sufficient criterion for the exponential stability of periodic solutions of delay differential equations with large delay. We show that for sufficiently large delay the Floquet spectrum near criticality is characterized by a set of curves, which we call asymptotic continuous spectrum, that is independent on the delay.Comment: postprint versio

    Leading off-diagonal contribution to the spectral form factor of chaotic quantum systems

    Get PDF
    We semiclassically derive the leading off-diagonal correction to the spectral form factor of quantum systems with a chaotic classical counterpart. To this end we present a phase space generalization of a recent approach for uniformly hyperbolic systems (M. Sieber and K. Richter, Phys. Scr. T90, 128 (2001); M. Sieber, J. Phys. A: Math. Gen. 35, L613 (2002)). Our results coincide with corresponding random matrix predictions. Furthermore, we study the transition from the Gaussian orthogonal to the Gaussian unitary ensemble.Comment: 8 pages, 2 figures; J. Phys. A: Math. Gen. (accepted for publication
    corecore