509 research outputs found

    On mechanisms that enforce complementarity

    Get PDF
    In a recent publication Luis and Sanchez-Soto arrive at the conclusion that complementarity is universally enforced by random classical phase kicks. We disagree. One could just as well argue that quantum entanglement is the universal mechanism. Both claims of universality are unjustified, however.Comment: 4 page

    Scaling behavior of quark propagator in full QCD

    Get PDF
    We study the scaling behavior of the quark propagator on two lattices with similar physical volume in Landau gauge with 2+1 flavors of dynamical quarks in order to test whether we are close to the continuum limit for these lattices. We use configurations generated with an improved staggered (``Asqtad'') action by the MILC collaboration. The calculations are performed on 283×9628^3\times 96 lattices with lattice spacing a=0.09a = 0.09 fm and on 203×6420^3\times 64 lattices with lattice spacing a=0.12a = 0.12 fm. We calculate the quark mass function, M(q2)M(q^2), and the wave-function renormalization function, Z(q2)Z(q^2), for a variety of bare quark masses. Comparing the behavior of these functions on the two sets of lattices we find that both Z(q2)Z(q^2) and M(q2)M(q^2) show little sensitivity to the ultraviolet cutoff.Comment: 6 pages, 5 figure

    On the Time-Dependent Analysis of Gamow Decay

    Full text link
    Gamow's explanation of the exponential decay law uses complex "eigenvalues" and exponentially growing "eigenfunctions". This raises the question, how Gamow's description fits into the quantum mechanical description of nature, which is based on real eigenvalues and square integrable wave functions. Observing that the time evolution of any wave function is given by its expansion in generalized eigenfunctions, we shall answer this question in the most straightforward manner, which at the same time is accessible to graduate students and specialists. Moreover the presentation can well be used in physics lectures to students.Comment: 10 pages, 4 figures; heuristic argument simplified, different example discussed, calculation of decay rate adde

    Lieb-Liniger model of a dissipation-induced Tonks-Girardeau gas

    Full text link
    We show that strong inelastic interactions between bosons in one dimension create a Tonks-Girardeau gas, much as in the case of elastic interactions. We derive a Markovian master equation that describes the loss caused by the inelastic collisions. This yields a loss rate equation and a dissipative Lieb-Liniger model for short times. We obtain an analytic expression for the pair correlation function in the limit of strong dissipation. Numerical calculations show how a diverging dissipation strength leads to a vanishing of the actual loss rate and renders an additional elastic part of the interaction irrelevant

    Electronic structure studies of BaFe2As2 by angle-resolved photoemission spectroscopy

    Full text link
    We report high resolution angle-resolved photoemission spectroscopy (ARPES) studies of the electronic structure of BaFe2_2As2_2, which is one of the parent compounds of the Fe-pnictide superconductors. ARPES measurements have been performed at 20 K and 300 K, corresponding to the orthorhombic antiferromagnetic phase and the tetragonal paramagnetic phase, respectively. Photon energies between 30 and 175 eV and polarizations parallel and perpendicular to the scattering plane have been used. Measurements of the Fermi surface yield two hole pockets at the Γ\Gamma-point and an electron pocket at each of the X-points. The topology of the pockets has been concluded from the dispersion of the spectral weight as a function of binding energy. Changes in the spectral weight at the Fermi level upon variation of the polarization of the incident photons yield important information on the orbital character of the states near the Fermi level. No differences in the electronic structure between 20 and 300 K could be resolved. The results are compared with density functional theory band structure calculations for the tetragonal paramagnetic phase.Comment: 11 pages, 5 figure

    About the strength of correlation effects in the electronic structure of iron

    Full text link
    The strength of electronic correlation effects in the spin-dependent electronic structure of ferromagnetic bcc Fe(110) has been investigated by means of spin and angle-resolved photoemission spectroscopy. The experimental results are compared to theoretical calculations within the three-body scattering approximation and within the dynamical mean-field theory, together with one-step model calculations of the photoemission process. This comparison indicates that the present state of the art many-body calculations, although improving the description of correlation effects in Fe, give too small mass renormalizations and scattering rates thus demanding more refined many-body theories including non-local fluctuations.Comment: 4 pages, 4 figure

    Signatures of non-locality in the first-order coherence of the scattered light

    Get PDF
    The spatial coherence of an atomic wavepacket can be detected in the scattered photons, even when the center-of-mass motion is in the quantum coherent superposition of two distant, non-overlapping wave packets. Spatial coherence manifests itself in the power spectrum of the emitted photons, whose spectral components can exhibit interference fringes as a function of the emission angle. The contrast and the phase of this interference pattern provide information about the quantum state of the center of mass of the scattering atom.Comment: 5 pages, one figure, submitted to Laser Physics, special issue in memory of Herbert Walthe

    A Delayed Choice Quantum Eraser

    Get PDF
    This paper reports a "delayed choice quantum eraser" experiment proposed by Scully and Dr\"{u}hl in 1982. The experimental results demonstrated the possibility of simultaneously observing both particle-like and wave-like behavior of a quantum via quantum entanglement. The which-path or both-path information of a quantum can be erased or marked by its entangled twin even after the registration of the quantum.Comment: twocolumn, 4pages, submitted to PR

    Quantum Nondemolition State Measurement via Atomic Scattering in Bragg Regime

    Full text link
    We suggest a quantum nondemolition scheme to measure a quantized cavity field state using scattering of atoms in general Bragg regime. Our work extends the QND measurement of a cavity field from Fock state, based on first order Bragg deflection [9], to any quantum state based on Bragg deflection of arbitrary order. In addition a set of experimental parameters is provided to perform the experiment within the frame work of the presently available technology.Comment: 11 pages text, 4 eps figures, to appear in letter section of journal of physical society of Japa

    Adiabatic Pair Creation

    Full text link
    We give here the proof that pair creation in a time dependent potentials is possible. It happens with probability one if the potential changes adiabatically in time and becomes overcritical, that is when an eigenvalue enters the upper spectral continuum. The potential may be assumed to be zero at large negative and positive times. The rigorous treatment of this effect has been lacking since the pioneering work of Beck, Steinwedel and Suessmann in 1963 and Gershtein and Zeldovich in 1970.Comment: 53 pages, 1 figure. Editorial changes on page 22 f
    • …
    corecore