509 research outputs found
On mechanisms that enforce complementarity
In a recent publication Luis and Sanchez-Soto arrive at the conclusion that
complementarity is universally enforced by random classical phase kicks. We
disagree. One could just as well argue that quantum entanglement is the
universal mechanism. Both claims of universality are unjustified, however.Comment: 4 page
Scaling behavior of quark propagator in full QCD
We study the scaling behavior of the quark propagator on two lattices with
similar physical volume in Landau gauge with 2+1 flavors of dynamical quarks in
order to test whether we are close to the continuum limit for these lattices.
We use configurations generated with an improved staggered (``Asqtad'') action
by the MILC collaboration. The calculations are performed on
lattices with lattice spacing fm and on lattices
with lattice spacing fm. We calculate the quark mass function,
, and the wave-function renormalization function, , for a
variety of bare quark masses. Comparing the behavior of these functions on the
two sets of lattices we find that both and show little
sensitivity to the ultraviolet cutoff.Comment: 6 pages, 5 figure
On the Time-Dependent Analysis of Gamow Decay
Gamow's explanation of the exponential decay law uses complex "eigenvalues"
and exponentially growing "eigenfunctions". This raises the question, how
Gamow's description fits into the quantum mechanical description of nature,
which is based on real eigenvalues and square integrable wave functions.
Observing that the time evolution of any wave function is given by its
expansion in generalized eigenfunctions, we shall answer this question in the
most straightforward manner, which at the same time is accessible to graduate
students and specialists. Moreover the presentation can well be used in physics
lectures to students.Comment: 10 pages, 4 figures; heuristic argument simplified, different example
discussed, calculation of decay rate adde
Lieb-Liniger model of a dissipation-induced Tonks-Girardeau gas
We show that strong inelastic interactions between bosons in one dimension
create a Tonks-Girardeau gas, much as in the case of elastic interactions. We
derive a Markovian master equation that describes the loss caused by the
inelastic collisions. This yields a loss rate equation and a dissipative
Lieb-Liniger model for short times. We obtain an analytic expression for the
pair correlation function in the limit of strong dissipation. Numerical
calculations show how a diverging dissipation strength leads to a vanishing of
the actual loss rate and renders an additional elastic part of the interaction
irrelevant
Electronic structure studies of BaFe2As2 by angle-resolved photoemission spectroscopy
We report high resolution angle-resolved photoemission spectroscopy (ARPES)
studies of the electronic structure of BaFeAs, which is one of the
parent compounds of the Fe-pnictide superconductors. ARPES measurements have
been performed at 20 K and 300 K, corresponding to the orthorhombic
antiferromagnetic phase and the tetragonal paramagnetic phase, respectively.
Photon energies between 30 and 175 eV and polarizations parallel and
perpendicular to the scattering plane have been used. Measurements of the Fermi
surface yield two hole pockets at the -point and an electron pocket at
each of the X-points. The topology of the pockets has been concluded from the
dispersion of the spectral weight as a function of binding energy. Changes in
the spectral weight at the Fermi level upon variation of the polarization of
the incident photons yield important information on the orbital character of
the states near the Fermi level. No differences in the electronic structure
between 20 and 300 K could be resolved. The results are compared with density
functional theory band structure calculations for the tetragonal paramagnetic
phase.Comment: 11 pages, 5 figure
About the strength of correlation effects in the electronic structure of iron
The strength of electronic correlation effects in the spin-dependent
electronic structure of ferromagnetic bcc Fe(110) has been investigated by
means of spin and angle-resolved photoemission spectroscopy. The experimental
results are compared to theoretical calculations within the three-body
scattering approximation and within the dynamical mean-field theory, together
with one-step model calculations of the photoemission process. This comparison
indicates that the present state of the art many-body calculations, although
improving the description of correlation effects in Fe, give too small mass
renormalizations and scattering rates thus demanding more refined many-body
theories including non-local fluctuations.Comment: 4 pages, 4 figure
Signatures of non-locality in the first-order coherence of the scattered light
The spatial coherence of an atomic wavepacket can be detected in the
scattered photons, even when the center-of-mass motion is in the quantum
coherent superposition of two distant, non-overlapping wave packets. Spatial
coherence manifests itself in the power spectrum of the emitted photons, whose
spectral components can exhibit interference fringes as a function of the
emission angle. The contrast and the phase of this interference pattern provide
information about the quantum state of the center of mass of the scattering
atom.Comment: 5 pages, one figure, submitted to Laser Physics, special issue in
memory of Herbert Walthe
A Delayed Choice Quantum Eraser
This paper reports a "delayed choice quantum eraser" experiment proposed by
Scully and Dr\"{u}hl in 1982. The experimental results demonstrated the
possibility of simultaneously observing both particle-like and wave-like
behavior of a quantum via quantum entanglement. The which-path or both-path
information of a quantum can be erased or marked by its entangled twin even
after the registration of the quantum.Comment: twocolumn, 4pages, submitted to PR
Quantum Nondemolition State Measurement via Atomic Scattering in Bragg Regime
We suggest a quantum nondemolition scheme to measure a quantized cavity field
state using scattering of atoms in general Bragg regime. Our work extends the
QND measurement of a cavity field from Fock state, based on first order Bragg
deflection [9], to any quantum state based on Bragg deflection of arbitrary
order. In addition a set of experimental parameters is provided to perform the
experiment within the frame work of the presently available technology.Comment: 11 pages text, 4 eps figures, to appear in letter section of journal
of physical society of Japa
Adiabatic Pair Creation
We give here the proof that pair creation in a time dependent potentials is
possible. It happens with probability one if the potential changes
adiabatically in time and becomes overcritical, that is when an eigenvalue
enters the upper spectral continuum. The potential may be assumed to be zero at
large negative and positive times. The rigorous treatment of this effect has
been lacking since the pioneering work of Beck, Steinwedel and Suessmann in
1963 and Gershtein and Zeldovich in 1970.Comment: 53 pages, 1 figure. Editorial changes on page 22 f
- …