96 research outputs found

    Outbreak among drug users caused by a clonal strain of group A streptococcus.

    Get PDF
    We describe an outbreak among drug users of severe soft-tissue infections caused by a clonal strain of group A streptococcus of M-type 25. Cases (n = 19) in drug users were defined as infections (mainly needle abscesses) due to the outbreak strain. Comparison with controls showed that infected drug users bought drugs more often at a specific place. Drug purchase and use habits may have contributed to this outbreak

    A Deletion in the N-Myc Downstream Regulated Gene 1 (NDRG1) Gene in Greyhounds with Polyneuropathy

    Get PDF
    The polyneuropathy of juvenile Greyhound show dogs shows clinical similarities to the genetically heterogeneous Charcot-Marie-Tooth (CMT) disease in humans. The pedigrees containing affected dogs suggest monogenic autosomal recessive inheritance and all affected dogs trace back to a single male. Here, we studied the neuropathology of this disease and identified a candidate causative mutation. Peripheral nerve biopsies from affected dogs were examined using semi-thin histology, nerve fibre teasing and electron microscopy. A severe chronic progressive mixed polyneuropathy was observed. Seven affected and 17 related control dogs were genotyped on the 50k canine SNP chip. This allowed us to localize the causative mutation to a 19.5 Mb interval on chromosome 13 by homozygosity mapping. The NDRG1 gene is located within this interval and NDRG1 mutations have been shown to cause hereditary motor and sensory neuropathy-Lom in humans (CMT4D). Therefore, we considered NDRG1 a positional and functional candidate gene and performed mutation analysis in affected and control Greyhounds. A 10 bp deletion in canine NDRG1 exon 15 (c.1080_1089delTCGCCTGGAC) was perfectly associated with the polyneuropathy phenotype of Greyhound show dogs. The deletion causes a frame shift (p.Arg361SerfsX60) which alters several amino acids before a stop codon is encountered. A reduced level of NDRG1 transcript could be detected by RT-PCR. Western blot analysis demonstrated an absence of NDRG1 protein in peripheral nerve biopsy of an affected Greyhound. We thus have identified a candidate causative mutation for polyneuropathy in Greyhounds and identified the first genetically characterized canine CMT model which offers an opportunity to gain further insights into the pathobiology and therapy of human NDRG1 associated CMT disease. Selection against this mutation can now be used to eliminate polyneuropathy from Greyhound show dogs

    The CPT1C 5′UTR Contains a Repressing Upstream Open Reading Frame That Is Regulated by Cellular Energy Availability and AMPK

    Get PDF
    BACKGROUND: Translational control is utilized as a means of regulating gene expression in many species. In most cases, posttranscriptional regulatory mechanisms play an important role in stress response pathways and can lead to dysfunctional physiology if blocked by mutations. Carnitine Palmitoyltransferase 1 C (CPT1C), the brain-specific member of the CPT 1 family, has previously been shown to be involved in regulating metabolism in situations of energy surplus. PRINCIPAL FINDINGS: Sequence analysis of the CPT1C mRNA revealed that it contains an upstream open reading frame (uORF) in the 5' UTR of its mRNA. Using CPT1C 5' UTR/luciferase constructs, we investigated the role of the uORF in translational regulation. The results presented here show that translation from the CPT1C main open reading frame (mORF) is repressed by the presence of the uORF, that this repression is relieved in response to specific stress stimuli, namely glucose deprivation and palmitate-BSA treatment, and that AMPK inhibition can relieve this uORF-dependent repression. SIGNIFICANCE: The fact that the mORF regulation is relieved in response to a specific set of stress stimuli rather than general stress response, hints at an involvement of CPT1C in cellular energy-sensing pathways and provides further evidence for a role of CPT1C in hypothalamic regulation of energy homeostasis

    A point mutation in cpsE renders Streptococcus pneumoniae nonencapsulated and enhances its growth, adherence and competence.

    Get PDF
    BACKGROUND: The polysaccharide capsule is a major virulence factor of the important human pathogen Streptococcus pneumoniae. However, S. pneumoniae strains lacking capsule do occur. RESULTS: Here, we report a nasopharyngeal isolate of Streptococcus pneumoniae composed of a mixture of two phenotypes; one encapsulated (serotype 18C) and the other nonencapsulated, determined by serotyping, electron microscopy and fluorescence isothiocyanate dextran exclusion assay.By whole genome sequencing, we demonstrated that the phenotypes differ by a single nucleotide base pair in capsular gene cpsE (C to G change at gene position 1135) predicted to result in amino acid change from arginine to glycine at position 379, located in the cytoplasmic, enzymatically active, region of this transmembrane protein. This SNP is responsible for loss of capsule production as the phenotype is transferred with the capsule operon. The nonencapsulated variant is superior in growth in vitro and is also 117-fold more adherent to and more invasive into Detroit 562 human epithelial cells than the encapsulated variant.Expression of six competence pathway genes and one competence-associated gene was 11 to 34-fold higher in the nonencapsulated variant than the encapsulated and transformation frequency was 3.7-fold greater. CONCLUSIONS: We identified a new single point mutation in capsule gene cpsE of a clinical S. pneumoniae serotype 18C isolate sufficient to cause loss of capsule expression resulting in the co-existence of the encapsulated and nonencapsulated phenotype. The mutation caused phenotypic changes in growth, adherence to epithelial cells and transformability. Mutation in capsule gene cpsE may be a way for S. pneumoniae to lose its capsule and increase its colonization potential

    Two Cellular Protein Kinases, DNA-PK and PKA, Phosphorylate the Adenoviral L4-33K Protein and Have Opposite Effects on L1 Alternative RNA Splicing

    Get PDF
    Accumulation of the complex set of alternatively processed mRNA from the adenovirus major late transcription unit (MLTU) is subjected to a temporal regulation involving both changes in poly (A) site choice and alternative 3′ splice site usage. We have previously shown that the adenovirus L4-33K protein functions as an alternative splicing factor involved in activating the shift from L1-52,55K to L1-IIIa mRNA. Here we show that L4-33K specifically associates with the catalytic subunit of the DNA-dependent protein kinase (DNA-PK) in uninfected and adenovirus-infected nuclear extracts. Further, we show that L4-33K is highly phosphorylated by DNA-PK in vitro in a double stranded DNA-independent manner. Importantly, DNA-PK deficient cells show an enhanced production of the L1-IIIa mRNA suggesting an inhibitory role of DNA-PK on the temporal switch in L1 alternative RNA splicing. Moreover, we show that L4-33K also is phosphorylated by protein kinase A (PKA), and that PKA has an enhancer effect on L4-33K-stimulated L1-IIIa splicing. Hence, we demonstrate that these kinases have opposite effects on L4-33K function; DNA-PK as an inhibitor and PKA as an activator of L1-IIIa mRNA splicing. Taken together, this is the first report identifying protein kinases that phosphorylate L4-33K and to suggest novel regulatory roles for DNA-PK and PKA in adenovirus alternative RNA splicing

    Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the United States

    Get PDF
    Short-term probabilistic forecasts of the trajectory of the COVID-19 pandemic in the United States have served as a visible and important communication channel between the scientific modeling community and both the general public and decision-makers. Forecasting models provide specific, quantitative, and evaluable predictions that inform short-term decisions such as healthcare staffing needs, school closures, and allocation of medical supplies. Starting in April 2020, the US COVID-19 Forecast Hub (https://covid19forecasthub.org/) collected, disseminated, and synthesized tens of millions of specific predictions from more than 90 different academic, industry, and independent research groups. A multimodel ensemble forecast that combined predictions from dozens of groups every week provided the most consistently accurate probabilistic forecasts of incident deaths due to COVID-19 at the state and national level from April 2020 through October 2021. The performance of 27 individual models that submitted complete forecasts of COVID-19 deaths consistently throughout this year showed high variability in forecast skill across time, geospatial units, and forecast horizons. Two-thirds of the models evaluated showed better accuracy than a naïve baseline model. Forecast accuracy degraded as models made predictions further into the future, with probabilistic error at a 20-wk horizon three to five times larger than when predicting at a 1-wk horizon. This project underscores the role that collaboration and active coordination between governmental public-health agencies, academic modeling teams, and industry partners can play in developing modern modeling capabilities to support local, state, and federal response to outbreaks

    The United States COVID-19 Forecast Hub dataset

    Get PDF
    Academic researchers, government agencies, industry groups, and individuals have produced forecasts at an unprecedented scale during the COVID-19 pandemic. To leverage these forecasts, the United States Centers for Disease Control and Prevention (CDC) partnered with an academic research lab at the University of Massachusetts Amherst to create the US COVID-19 Forecast Hub. Launched in April 2020, the Forecast Hub is a dataset with point and probabilistic forecasts of incident cases, incident hospitalizations, incident deaths, and cumulative deaths due to COVID-19 at county, state, and national, levels in the United States. Included forecasts represent a variety of modeling approaches, data sources, and assumptions regarding the spread of COVID-19. The goal of this dataset is to establish a standardized and comparable set of short-term forecasts from modeling teams. These data can be used to develop ensemble models, communicate forecasts to the public, create visualizations, compare models, and inform policies regarding COVID-19 mitigation. These open-source data are available via download from GitHub, through an online API, and through R packages

    Load-bearing capacity of CAD/CAM 3D-printed zirconia, CAD/CAM milled zirconia, and heat-pressed lithium disilicate ultra-thin occlusal veneers on molars

    Get PDF
    OBJECTIVES: The load-bearing capacity of ultra-thin occlusal veneers made of 3D-printed zirconia were compared to the ones obtained by fabricating these reconstructions by CAD/CAM milling zirconia or heat-pressing lithium-disilicate. METHODS: On 60 extracted human molars, the occlusal enamel was removed and extended into dentin. Occlusal veneers of 0.5 mm thickness were digitally designed. The specimens were divided into 3 groups (n = 20 each) differing in the restorative material and the fabrication technique of the occlusal veneer. (1) 3DP: 3D-printed zirconia (Lithoz); (2): CAM: milled zirconia (Ceramill Zolid FX); (3) HPR: heat-pressed lithium disilicate (IPS e.max Press). After conditioning procedures, the restorations were adhesively bonded onto the conditioned tooth. Thereafter, all specimens were aged in a chewing simulator by exposure to cyclic fatigue and temperature variations. Subsequently the specimens were statically loaded and the load which was necessary to decrease the maximum load by 20% and initiate a crack (Finitial_{initial}) and the load which was needed to fracture the specimen (Fmax_{max}) were measured. Differences between the groups were compared applying the Kruskal-Wallis (KW) test and the Wilcoxon-Mann-Whitney-Test (WMW: p < 0.05). RESULTS: The median Finitial_{initial} values for the groups 3DP, CAM and HPR were 1'650 N, 1'250 N and 500 N. The differences between all three groups were statistically significant (KW: p < 0.0001). The median Fmax_{max} values amounted to 2'026 N for the group 3DP, 1'500 N for the group CAM and 1'555 N for the group HPR. Significant differences were found between 3DP and CAM (WMW: p = 0.0238). SIGNIFICANCE: Regarding their load-bearing capacity, 3D-printed or milled zirconia, as well as heat-pressed lithium disilicate, can be recommended as restorative material for ultra-thin occlusal veneers to prosthetically compensate for occlusal tooth wear. Despite statistically significant differences between the restoration materials, all load-bearing capacities exceeded the clinically expected normal bite forces
    • …
    corecore