19,507 research outputs found

    Coupled equations for Kähler metrics and Yang-Mills connections

    No full text
    We study equations on a principal bundle over a compact complex manifold coupling a connection on the bundle with a Kahler structure on the base. These equations generalize the conditions of constant scalar curvature for a Kahler metric and Hermite-Yang-Mills for a connection. We provide a moment map interpretation of the equations and study obstructions for the existence of solutions, generalizing the Futaki invariant, the Mabuchi K-energy and geodesic stability. We finish by giving some examples of solutions.Comment: 61 pages; v2: introduction partially rewritten; minor corrections and improvements in presentation, especially in Section 4; added references; v3: To appear in Geom. Topol. Minor corrections and improvements, following comments by referee

    X-ray spectral variability of seven LINER nuclei with XMM-Newton and Chandra data

    Full text link
    One of the most important features in active galactic nuclei (AGN) is the variability of their emission. Variability has been discovered at X-ray, UV, and radio frequencies on time scales from hours to years. Among the AGN family and according to theoretical studies, Low-Ionization Nuclear Emission Line Region (LINER) nuclei would be variable objects on long time scales. Our purpose is to investigate spectral X-ray variability in LINERs and to understand the nature of these kinds of objects, as well as their accretion mechanism. Chandra and XMM-Newton public archives were used to compile X-ray spectra of seven LINER nuclei at different epochs with time scales of years. To search for variability we fit all the spectra from the same object with a set of models, in order to identify the parameters responsible for the variability pattern. We also analyzed the light curves in order to search for short time scale (from hours to days) variability. Whenever possible, UV variability was also studied. We found spectral variability in four objects, with variations mostly related to hard energies (2-10 keV). These variations are due to changes in the soft excess, and/or changes in the absorber, and/or intrinsic variations of the source. Another two galaxies seem not to vary. Short time scale variations during individual observations were not found. Our analysis confirms the previously reported anticorrelation between the X-ray spectral index and the Eddington ratio, and also the correlation between the X-ray to UV flux ratio and the Eddington ratio. These results support an Advection Dominated Accretion Flow (ADAF) as the accretion mechanism in LINERs.Comment: 35 pages, 53 figures, recently accepted pape

    X-ray spectral variability of Seyfert 2 galaxies

    Get PDF
    Variability across the electromagnetic spectrum is a property of AGN that can help constraining the physical properties of these galaxies. This is the third of a serie of papers with the aim of studying the X-ray variability of different families of AGN. The main purpose of this work is to investigate the variability pattern in a sample of optically selected type 2 Seyfert galaxies. We use the 26 Seyferts in the Veron-Cetty and Veron catalogue with data available from Chandra and/or XMM-Newton public archives at different epochs, with timescales ranging from a few hours to years. All the spectra of the same source are simultaneously fitted and we let different parameters to vary in the model. Whenever possible, short-term variations and/or long-term UV flux variations are studied. We divide the sample in Compton-thick, Compton-thin, and changing-look candidates. Short-term variability at X-rays is not found. From the 25 analyzed sources, 11 show long-term variations; eight (out of 11) are Compton-thin, one (out of 12) is Compton-thick, and the two changing-look candidates are also variable. The main driver for the X-ray changes is related to the nuclear power (nine cases), while variations at soft energies or related with absorbers at hard X-rays are less common, and in many cases these variations are accompained with variations of the nuclear continuum. At UV frequencies nuclear variations are nor found. We report for the first time two changing-look candidates, MARK273 and NGC7319. A constant reflection component located far away from the nucleus plus a variable nuclear continuum are able to explain most of our results; the Compton-thick candidates are dominated by reflection, which supresses their continuum making them seem fainter, and not showing variations, while the Compton-thin and changing-look candidates show variations.Comment: Accepted for publication in A&

    X-ray spectral variability of LINERs selected from the Palomar sample

    Full text link
    Variability is a general property of active galactic nuclei (AGN). At X-rays, the way in which these changes occur is not yet clear. In the particular case of low ionisation nuclear emission line region (LINER) nuclei, variations on months/years timescales have been found for some objects, but the main driver of these changes is still an open question. The main purpose of this work is to investigate the X-ray variability in LINERs, including the main driver of such variations, and to search for eventual differences between type 1 and 2 objects. We use the 18 LINERs in the Palomar sample with data retrieved from Chandra and/or XMM-Newton archives corresponding to observations gathered at different epochs. All the spectra for the same object are simultaneously fitted in order to study long term variations. The nature of the variability patterns are studied allowing different parameters to vary during the spectral fit. Whenever possible, short term variations from the analysis of the light curves and UV variability are studied.Comment: 49 pages, accepted. arXiv admin note: text overlap with arXiv:1305.222

    Ecological genetics of freshwater fish: a short review of the genotype–phenotype connection

    Get PDF
    Genética ecológica de los peces de agua dulce: una breve revisión de la conexión genotipo–fenotipo La ecología molecular o la genética ecológica es una aplicación de la genética de poblaciones que durante las dos últimas décadas ha sufrido un proceso de expansión. Sin embargo, en la ecología molecular predominan los estudios sistemáticos y filogeográficos, con relativamente poco énfasis en el análisis de la base genética del proceso de adaptación a diferentes condiciones ecológicas. Esta relación entre genotipo y fenotipo adaptativo es poco evidente, porque las poblaciones son difíciles de cuantificar y los experimentos son logísticamente complicados. Es interesante destacar que en peces de agua dulce estos estudios no son tan poco frecuentes como en otros grupos de vertebrados. En esta revisión, nuestra intención es resumir los pocos casos en los cuales la relación entre ecología y genética de peces continentales está más desarrollada, principalmente entre marcadores genéticos y fenotipos ecológicos. Palabras clave: Genética ecológica, Ecología molecular, Interacción genotipo–fenotipo, Adaptación, Genética del paisaje, Introducción de especies.Molecular ecology or ecological genetics is an expanding application of population genetics which has flourished in the last two decades but it is dominated by systematic and phylogeographic studies, with relatively little emphasis on the study of the genetic basis of the process of adaptation to different ecological conditions. The relationship between genotype and adaptive phenotypes is weak because populations are often difficult to quantify and experiments are logistically challenging or unfeasible. Interestingly, in freshwater fish, studies to characterize the genetic architecture of adaptive traits are not as rare as in other vertebrate groups. In this review, we summarize the few cases where the relationship between the ecology and genetics of freshwater fish is more developed, namely the relationship between genetic markers and ecological phenotypes. Key words: Ecological genetics, Molecular ecology, Genotype–phenotype relationship, Adaptation, Landscape genetics, Species introduction.Genética ecológica de los peces de agua dulce: una breve revisión de la conexión genotipo–fenotipo La ecología molecular o la genética ecológica es una aplicación de la genética de poblaciones que durante las dos últimas décadas ha sufrido un proceso de expansión. Sin embargo, en la ecología molecular predominan los estudios sistemáticos y filogeográficos, con relativamente poco énfasis en el análisis de la base genética del proceso de adaptación a diferentes condiciones ecológicas. Esta relación entre genotipo y fenotipo adaptativo es poco evidente, porque las poblaciones son difíciles de cuantificar y los experimentos son logísticamente complicados. Es interesante destacar que en peces de agua dulce estos estudios no son tan poco frecuentes como en otros grupos de vertebrados. En esta revisión, nuestra intención es resumir los pocos casos en los cuales la relación entre ecología y genética de peces continentales está más desarrollada, principalmente entre marcadores genéticos y fenotipos ecológicos. Palabras clave: Genética ecológica, Ecología molecular, Interacción genotipo–fenotipo, Adaptación, Genética del paisaje, Introducción de especies

    Towards a component-based framework for developing Semantic Web applications

    Get PDF
    For those outside the research community, to develop Semantic Web applications entails real difficulty. This difficulty is due in part to the lack of usable approaches for planning Semantic Web solutions, even though Semantic Web tools have already reached industrial maturity. We propose here the Semantic Web Framework, a component-based framework for analysing rapidly the required components, the dependencies between them, and selecting existing solutions. This approach has been tested with a number of industrial partners, which justifies the effort made in this direction

    Semiclassical approach to fidelity amplitude

    Full text link
    The fidelity amplitude is a quantity of paramount importance in echo type experiments. We use semiclassical theory to study the average fidelity amplitude for quantum chaotic systems under external perturbation. We explain analytically two extreme cases: the random dynamics limit --attained approximately by strongly chaotic systems-- and the random perturbation limit, which shows a Lyapunov decay. Numerical simulations help us bridge the gap between both extreme cases.Comment: 10 pages, 9 figures. Version closest to published versio
    corecore