31 research outputs found

    Virus-Like Particles Are Efficient Tools for Boosting mRNA-Induced Antibodies.

    Get PDF
    mRNA based vaccines against COVID-19 have proven most successful at keeping SARS-CoV-2 pandemic at bay in many countries. Recently, there is an increased interest in heterologous prime-boost vaccination strategies for COVID-19 to maintain antibody responses for the control of continuously emerging SARS-CoV-2 variants of concern (VoCs) and to overcome other obstacles such as supply shortage, costs and reduced safety issues or inadequatly induced immune-responses. In this study, we investigated the antibody responses induced by heterologous prime-boost with vaccines based on mRNA and virus-like particles (VLPs). The VLP-based mCuMVTT-RBM vaccine candidate and the approved mRNA-1273 vaccine were used for this purpose. We find that homologous prime boost regimens with either mRNA or VLP induced high levels of high avidity antibodies. Optimal antibody responses were, however, induced by heterologous regimens both for priming with mRNA and boosting with VLP and vice versa, priming with VLP and boosting with mRNA. Thus, heterologous prime boost strategies may be able to optimize efficacy and economics of novel vaccine strategies

    Virus-Like Particles Are Efficient Tools for Boosting mRNA-Induced Antibodies

    Get PDF
    mRNA based vaccines against COVID-19 have proven most successful at keeping SARS-CoV-2 pandemic at bay in many countries. Recently, there is an increased interest in heterologous prime-boost vaccination strategies for COVID-19 to maintain antibody responses for the control of continuously emerging SARS-CoV-2 variants of concern (VoCs) and to overcome other obstacles such as supply shortage, costs and reduced safety issues or inadequatly induced immune-responses. In this study, we investigated the antibody responses induced by heterologous prime-boost with vaccines based on mRNA and virus-like particles (VLPs). The VLP-based mCuMVTT-RBM vaccine candidate and the approved mRNA-1273 vaccine were used for this purpose. We find that homologous prime boost regimens with either mRNA or VLP induced high levels of high avidity antibodies. Optimal antibody responses were, however, induced by heterologous regimens both for priming with mRNA and boosting with VLP and vice versa, priming with VLP and boosting with mRNA. Thus, heterologous prime boost strategies may be able to optimize efficacy and economics of novel vaccine strategies

    The next generation virus‐like particle platform for the treatment of peanut allergy

    Get PDF
    Background: Allergy to peanut is one of the leading causes of anaphylactic reactions among food allergic patients. Immunization against peanut allergy with a safe and protective vaccine holds a promise to induce durable protection against anaphylaxis caused by exposure to peanut. A novel vaccine candidate (VLP Peanut), based on virus‐like particles (VLPs), is described here for the treatment of peanut allergy. Methods and Results: VLP Peanut consists of two proteins: a capsid subunit derived from Cucumber mosaic virus engineered with a universal T‐cell epitope (CuMVTT_{TT}) and a CuMVTT_{TT} subunit fused with peanut allergen Ara h 2 (CuMVTT_{TT}‐Ara h 2), forming mosaic VLPs. Immunizations with VLP Peanut in both naïve and peanut‐sensitized mice resulted in a significant anti‐Ara h 2 IgG response. Local and systemic protection induced by VLP Peanut were established in mouse models for peanut allergy following prophylactic, therapeutic, and passive immunizations. Inhibition of FcγRIIb function resulted in a loss of protection, confirming the crucial role of the receptor in conferring cross protection against peanut allergens other than Ara h 2. Conclusion: VLP Peanut can be delivered to peanut‐sensitized mice without triggering allergic reactions, while remaining highly immunogenic and offering protection against all peanut allergens. In addition, vaccination ablates allergic symptoms upon allergen challenge. Moreover, the prophylactic immunization setting conferred the protection against subsequent peanut‐induced anaphylaxis, showing the potential for preventive vaccination. This highlights the effectiveness of VLP Peanut as a prospective break‐through immunotherapy vaccine candidate toward peanut allergy. VLP Peanut has now entered clinical development with the study PROTECT

    AP205 VLPs based on dimerized capsid proteins accommodate RBM domain of SARS-CoV-2 and serve as an attractive vaccine candidate

    Get PDF
    COVID-19 is a novel disease caused by SARS-CoV-2 which has conquered the world rapidly resulting in a pandemic that massively impacts our health, social activities, and economy. It is likely that vaccination is the only way to form “herd immunity” and restore the world to normal. Here we developed a vaccine candidate for COVID-19 based on the virus-like particle AP205 displaying the spike receptor binding motif (RBM), which is the major target of neutralizing antibodies in convalescent patients. To this end, we genetically fused the RBM domain of SARS-CoV-2 to the C terminus of AP205 of dimerized capsid proteins. The fused VLPs were expressed in E. coli, which resulted in insoluble aggregates. These aggregates were denatured in 8 M urea followed by refolding, which reconstituted VLP formation as confirmed by electron microscopy analysis. Importantly, immunized mice were able to generate high levels of IgG antibodies recognizing eukaryotically expressed receptor binding domain (RBD) as well as spike protein of SARS-CoV-2. Furthermore, induced antibodies were able to neutralize SARS-CoV-2/ABS/NL20. Additionally, this vaccine candidate has the potential to be produced at large scale for immunization programs

    Low-affinity but high-avidity interactions may offer an explanation for IgE-mediated allergen cross-reactivity.

    No full text
    BACKGROUND Allergy is a global disease with overall frequencies of >20%. Symptoms vary from irritating local itching to life-threatening systemic anaphylaxis. Even though allergies are allergen-specific, there is a wide range of cross-reactivities (eg apple and latex) that remain largely unexplained. Given the abilities of low-affinity IgG antibodies to inhibit mast cells activation, here we elucidate the minimal affinity of IgE antibodies to induce type I hypersensitivity. METHODS Three mature (high-affinity) IgE antibodies recognizing three distinct epitopes on Fel d 1, the major cat allergen, were back-mutated to germline conformation, resulting in binding to Fel d 1 with low affinity. The ability of these IgE antibodies to activate mast cells in vitro and in vivo was tested. RESULTS We demonstrate that affinities as low as 10-7  M are sufficient to activate mast cells in vitro and drive allergic reactions in vivo. Low-affinity IgE antibodies are able to do so, since they bind allergens bivalently on the surface of mast cells, leading to high-avidity interactions. CONCLUSIONS These results suggest that the underlying mechanism of allergen cross-reactivity may be low-affinity but high-avidity binding between IgE antibodies and cross-reactive allergen

    TLR7 Signaling Shapes and Maintains Antibody Diversity Upon Virus-Like Particle Immunization

    Get PDF
    Virus-like particles (VLPs) are used in different marketed vaccines and are able to induce potent antibody responses. The innate pattern recognition receptors TLR7/8 recognize single stranded (ss) RNA naturally packaged into some VLPs and have been shown to enhance the production of IgG antibodies upon immunization. Here we demonstrate that, upon immunization with RNA-loaded bacteriophage-derived VLP Qβ, TLR7 signaling accelerates germinal center formation, promotes affinity/avidity maturation of VLP-specific IgG and isotype switching to IgG2b/2c. These findings extrapolated to antigens displayed on Qβ; as Fel d 1, the major cat allergen, chemically attached to Qβ also induced higher affinity/avidity IgG2b/2c antibodies in a TLR7-dependent fashion. Chimeric mice lacking TLR7-expression exclusively in B cells demonstrated that the enhanced IgG responses were driven by a B cell intrinsic mechanism. Importantly, deep sequencing of the BCR repertoire of antigen-specific B cells demonstrated higher diversity in mice with TLR7 signaling in B cells, suggesting that TLR7-signaling drives BCR repertoire development and diversity. Furthermore, the current data demonstrate that high levels of clonal diversity are reached early in the response and maintained by TLR7 signaling. In conclusion, TLR7 signaling enhances levels and quality of IgG antibodies, and this finding has major implications for vaccine design.ISSN:1664-322

    A scalable and highly immunogenic virus‐like particle‐based vaccine against SARS‐CoV‐2

    Get PDF
    Background SARS-CoV-2 caused one of the most devastating pandemics in the recent history of mankind. Due to various countermeasures, including lock-downs, wearing masks, and increased hygiene, the virus has been controlled in some parts of the world. More recently, the availability of vaccines, based on RNA or adenoviruses, has greatly added to our ability to keep the virus at bay; again, however, in some parts of the world only. While available vaccines are effective, it would be desirable to also have more classical vaccines at hand for the future. Key feature of vaccines for long-term control of SARS-CoV-2 would be inexpensive production at large scale, ability to make multiple booster injections, and long-term stability at 4℃. Methods Here, we describe such a vaccine candidate, consisting of the SARS-CoV-2 receptor-binding motif (RBM) grafted genetically onto the surface of the immunologically optimized cucumber mosaic virus, called CuMVTT-RBM. Results Using bacterial fermentation and continuous flow centrifugation for purification, the yield of the production process is estimated to be >2.5 million doses per 1000-litre fermenter run. We demonstrate that the candidate vaccine is highly immunogenic in mice and rabbits and induces more high avidity antibodies compared to convalescent human sera. The induced antibodies are more cross-reactive to mutant RBDs of variants of concern (VoC). Furthermore, antibody responses are neutralizing and long-lived. In addition, the vaccine candidate was stable for at least 14 months at 4℃. Conclusion Thus, the here presented VLP-based vaccine may be a good candidate for use as conventional vaccine in the long term

    Intranasal administration of a VLP-based vaccine induces neutralizing antibodies against SARS-CoV-2 and variants of concern.

    No full text
    BACKGROUND The highly contagious SARS-CoV-2 is mainly transmitted by respiratory droplets and aerosols. Consequently, people are required to wear masks and maintain a social distance to avoid spreading of the virus. Despite the success of the commercially available vaccines, the virus is still uncontained globally. Given the tropism of SARS-CoV-2, a mucosal immune reaction would help to reduce viral shedding and transmission locally. Only seven out of hundreds of ongoing clinical trials are testing the intranasal delivery of a vaccine against COVID-19. METHODS In the current study, we evaluated the immunogenicity of a traditional vaccine platform based on virus-like particles (VLPs) displaying RBD of SARS-CoV-2 for intranasal administration in a murine model. The candidate vaccine platform, CuMVTT -RBD, has been optimized to incorporate a universal T helper cell epitope derived from tetanus-toxin and is self-adjuvanted with TLR7/8 ligands. RESULTS CuMVTT -RBD vaccine elicited a strong systemic RBD- and spike- IgG and IgA antibodies of high avidity. Local immune response was assessed and our results demonstrate a strong mucosal antibody and plasma cell production in lung tissue. Furthermore, the induced systemic antibodies could efficiently recognize and neutralize different variants of concern (VOCs) of mutated SARS-CoV-2 RBDs. CONCLUSION Our data demonstrate that intranasal administration of CuMVTT -RBD induces a protective systemic and local specific antibody response against SARS-CoV-2 and its VOCs
    corecore