16 research outputs found

    Protest

    No full text
    Holzer B. Protest. In: Jahraus O, Nassehi A, Grizelj M, Saake S, Kirchmeier C, MĂŒller J, eds. Luhmann‐Handbuch. Leben – Werk – Wirkung. Stuttgart/Weimar: J.B. Metzler; 2012: 193-196

    Artificial-infection protocols allow immunodetection of novel Borrelia burgdorferi antigens suitable as vaccine candidates against Lyme disease

    No full text
    Vaccination with recombinant outer surface protein A (OspA) from Borrelia burgdorferi provides excellent antibody-mediated protection against challenge with the pathogen in animal models and in humans. However, the bactericidal antibodies are ineffective in the reservoir host, since OspA is expressed by spirochetes only in the vector, but rarely, if at all, in mammals. Using an artificially generated immune serum (anti-108 spirochetes) with high protective potential for prophylactic and therapeutic treatment, we have now isolated from an expression library of B. burgdorferi (strain ZS7) three novel genes, zs7.a36, zs7.a66 and zs7.a68. All three genes are located, together with ospA/B, on the linear plasmid lp54, and are expressed in vitro and in ticks. At least temporarily two of them, ZS7.A36 and ZS7.A66, are also expressed during infection. The respective natural antigens are poorly immunogenic in infected normal mice but elicited antibodies in Lyme disease patients. We show that recombinant preparations of ZS7.A36, ZS7.A66 and ZS7.A68 induce functional antibodies in rabbits capable of protecting immunodeficient mice against subsequent experimental infection. These findings suggest that all three recombinant antigens represent potential candidates for a "second generation" vaccine to prevent and/or cure Lyme disease

    A novel fold for the factor H-binding protein BbCRASP-1 of Borrelia burgdorferi.

    No full text
    Borrelia burgdorferi, a spirochete transmitted to human hosts during feeding of infected Ixodes ticks, is the causative agent of Lyme disease. Serum-resistant B. burgdorferi strains cause a chronic, multisystemic form of the disease and bind complement factor H (FH) and FH-like protein 1 (FHL-1) on the spirochete surface. Here we report the atomic structure for the key FHL-1- and FH-binding protein BbCRASP-1 and reveal a homodimer that presents a novel target for drug design

    Structure-function mapping of BbCRASP-1, the key complement factor H and FHL-1 binding protein of Borrelia burgdorferi.

    No full text
    Borrelia burgdorferi, a spirochaete transmitted to human hosts during feeding of infected Ixodes ticks, is the causative agent of Lyme disease, the most frequent vector-borne disease in Eurasia and North America. Sporadically Lyme disease develops into a chronic, multisystemic disorder. Serum-resistant B. burgdorferi strains bind complement factor H (FH) and FH-like protein 1 (FHL-1) on the spirochaete surface. This binding is dependent on the expression of proteins termed complement-regulator acquiring surface proteins (CRASPs). The atomic structure of BbCRASP-1, the key FHL-1/FH-binding protein of B. burgdorferi, has recently been determined. Our analysis indicates that its protein topology apparently evolved to provide a high affinity interaction site for FH/FHL-1 and leads to an atomic-level hypothesis for the functioning of BbCRASP-1. This work demonstrates that pathogens interact with complement regulators in ways that are distinct from the mechanisms used by the host and are thus obvious targets for drug design

    High-Resolution Dissection of Phagosome Maturation Reveals Distinct Membrane Trafficking Phases

    No full text
    Molecular mechanisms of endocytosis in the genetically and biochemically tractable professional phagocyte Dictyostelium discoideum reveal a striking degree of similarity to higher eukaryotic cells. Pulse-chase feeding with latex beads allowed purification of phagosomes at different stages of maturation. Gentle ATP stripping of an actin meshwork entrapping contaminating organelles resulted in a 10-fold increase in yield and purity, as confirmed by electron microscopy. Temporal profiling of signaling, cytoskeletal, and trafficking proteins resulted in a complex molecular fingerprint of phagosome biogenesis and maturation. First, nascent phagosomes were associated with coronin and rapidly received a lysosomal glycoprotein, LmpB. Second, at least two phases of delivery of lysosomal hydrolases (cathepsin D [CatD] and cysteine protease [CPp34]) were accompanied by removal of plasma membrane components (PM4C4 and biotinylated surface proteins). Third, a phase of late maturation, preparing for final exocytosis of undigested material, included quantitative recycling of hydrolases and association with vacuolin. Also, lysosomal glycoproteins of the Lmp family showed distinct trafficking kinetics. The delivery and recycling of CatD was directly visualized by confocal microscopy. This heavy membrane traffic of cargos was precisely accompanied by regulatory proteins such as the Rab7 GTPases and the endosomal SNAREs Vti1 and VAMP7. This initial molecular description of phagocytosis demonstrates the feasibility of a comprehensive analysis of phagosomal lipids and proteins in genetically modified strains
    corecore