21 research outputs found

    Identification, characterization and heparin binding capacity of a spore-wall, virulence protein from the shrimp microsporidian, Enterocytozoon hepatopenaei (EHP)

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.BACKGROUND: The microsporidian Enterocytozoon hepatopenaei (EHP) is a spore-forming, intracellular parasite that causes an economically debilitating disease (hepatopancreatic microsporidiosis or HPM) in cultured shrimp. HPM is characterized by growth retardation and wide size variation that can result in economic loss for shrimp farmers. Currently, the infection mechanism of EHP in shrimp is poorly understood, especially at the level of host-parasite interaction. In other microsporidia, spore wall proteins have been reported to be involved in host cell recognition. For the host, heparin, a glycosaminoglycan (GAG) molecule found on cell surfaces, has been shown to be recognized by many parasites such as Plasmodium spp. and Leishmania spp. RESULTS: We identified and characterized the first spore wall protein of EHP (EhSWP1). EhSWP1 contains three heparin binding motifs (HBMs) at its N-terminus and a Bin-amphiphysin-Rvs-2 (BAR2) domain at its C-terminus. A phylogenetic analysis revealed that EhSWP1 is similar to an uncharacterized spore wall protein from Enterospora canceri. In a cohabitation bioassay using EHP-infected shrimp with naïve shrimp, the expression of EhSWP1 was detected by RT-PCR in the naïve test shrimp at 20 days after the start of cohabitation. Immunofluorescence analysis confirmed that EhSWP1 was localized in the walls of purified, mature spores. Subcellular localization by an immunoelectron assay revealed that EhSWP1 was distributed in both the endospore and exospore layers. An in vitro binding assay, a competition assay and mutagenesis studies revealed that EhSWP1 is a bona fide heparin binding protein. CONCLUSIONS: Based on our results, we hypothesize that EhSWP1 is an important host-parasite interaction protein involved in tethering spores to host-cell-surface heparin during the process of infection.This project was supported by the Agricultural Research Development Agency (ARDA) of Thailand under project CRP5905020530, by the Thailand Research Fund (TRF) under project IRG5980008 and TRG5780032, by the Newton Institutional Links (IL) program to BIOTEC, Thailand and Cefas, UK, and by Mahidol University. PJ would like to thank the Science Achievement Scholarship of Thailand (SAST) for a PhD scholarshi

    A nested PCR assay to avoid false positive detection of the microsporidian enterocytozoon hepatopenaei (EHP) in environmental samples in shrimp farms

    Get PDF
    PublishedJournal Article© 2016 Jaroenlak et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Hepatopancreatic microsporidiosis (HPM) caused by Enterocytozoon hepatopenaei (EHP) is an important disease of cultivated shrimp. Heavy infections may lead to retarded growth and unprofitable harvests. Existing PCR detection methods target the EHP small subunit ribosomal RNA (SSU rRNA) gene (SSU-PCR). However, we discovered that they can give false positive test results due to cross reactivity of the SSU-PCR primers with DNA from closely related microsporidia that infect other aquatic organisms. This is problematic for investigating and monitoring EHP infection pathways. To overcome this problem, a sensitive and specific nested PCR method was developed for detection of the spore wall protein (SWP) gene of EHP (SWP-PCR). The new SWP-PCR method did not produce false positive results from closely related microsporidia. The first PCR step of the SWP-PCR method was 100 times (104 plasmid copies per reaction vial) more sensitive than that of the existing SSU-PCR method (106 copies) but sensitivity was equal for both in the nested step (10 copies). Since the hepatopancreas of cultivated shrimp is not currently known to be infected with microsporidia other than EHP, the SSU-PCR methods are still valid for analyzing hepatopancreatic samples despite the lower sensitivity than the SWP-PCR method. However, due to its greater specificity and sensitivity, we recommend that the SWP-PCR method be used to screen for EHP in feces, feed and environmental samples for potential EHP carriers.OI acknowledges support from Agricultural Research Development Agency under project CRP5905020530 and Mahidol University. KS received funding from National Research Council Thailand, Division of Plan Administration and Research Budget/2557-79. PJ is supported by the Science Achievement Scholarship of Thailand (SAST). GDS acknowledges support of DG SANCO of the European Commission, and the UK Department of Environment, Food and Rural Affairs under project FB002. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    New Paradigms to Help Solve the Global Aquaculture Disease Crisis.

    Get PDF
    Published onlineJournal ArticleThis is the final version of the article. Available from Public Library of Science via the DOI in this record.n/aThe authors (GDS, KS) acknowledge funding administered by the British Council under the Newton Fund Researcher Links Programme, for a UK-Thailand bilateral workshop entitled "Scientific, technological and social solutions for sustainable aquaculture in Thailand: a key player in global aquatic food supply," Bangkok, March 2016. Further funding support is acknowledged from the European Commission (EC) and the UK Department for Environment, Food and Rural Affairs (Defra) under contracts C6928 and FB002 (to GDS and DB); from the Royal Society under a University Research Fellowship (to BAPW); and to the Agricultural Research Development Agency (ARDA) and National Research Council of Thailand (NRCT) (to KS, TWF, and OI). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    The mechanism of DNA unwinding by the eukaryotic replicative helicase

    Get PDF
    Accurate DNA replication is tightly regulated in eukaryotes to ensure genome stability during cell division and is performed by the multi-protein replisome. At the core an AAA+ hetero-hexameric complex, Mcm2-7, together with GINS and Cdc45 form the active replicative helicase Cdc45/Mcm2-7/GINS (CMG). It is not clear how this replicative ring helicase translocates on, and unwinds, DNA. We measure real-time dynamics of purified recombinant Drosophila melanogaster CMG unwinding DNA with single-molecule magnetic tweezers. Our data demonstrates that CMG exhibits a biased random walk, not the expected unidirectional motion. Through building a kinetic model we find CMG may enter up to three paused states rather than unwinding, and should these be prevented, in vivo fork rates would be recovered in vitro. We propose a mechanism in which CMG couples ATP hydrolysis to unwinding by acting as a lazy Brownian ratchet, thus providing quantitative understanding of the central process in eukaryotic DNA replication

    Bacterial RadA is a DnaB-type helicase interacting with RecA to promote bidirectional D-loop extension

    No full text
    Homologous recombination (HR) is a central process of genome biology driven by a conserved recombinase, which catalyses the pairing of single-stranded DNA (ssDNA) with double-stranded DNA to generate a D-loop intermediate. Bacterial RadA is a conserved HR effector acting with RecA recombinase to promote ssDNA integration. The mechanism of this RadA-mediated assistance to RecA is unknown. Here, we report functional and structural analyses of RadA from the human pathogen Streptococcus pneumoniae. RadA is found to facilitate RecA-driven ssDNA recombination over long genomic distances during natural transformation. RadA is revealed as a hexameric DnaB-type helicase, which interacts with RecA to promote orientated unwinding of branched DNA molecules mimicking D-loop boundaries. These findings support a model of DNA branch migration in HR, relying on RecA-mediated loading of RadA hexamers on each strand of the recipient dsDNA in the D-loop, from which they migrate divergently to facilitate incorporation of invading ssDNA
    corecore