239 research outputs found
Investigating laser induced phase engineering in MoS2 transistors
Phase engineering of MoS2 transistors has recently been demonstrated and has
led to record low contact resistances. The phase patterning of MoS2 flakes with
laser radiation has also been realized via spectroscopic methods, which invites
the potential of controlling the metallic and semiconducting phases of MoS2
transistors by simple light exposure. Nevertheless, the fabrication and
demonstration of laser patterned MoS2 devices starting from the metallic
polymorph has not been demonstrated yet. Here, we study the effects of laser
radiation on 1T/1T'-MoS2 transistors with the prospect of driving an in-situ
phase transition to the 2H-polymorph through light exposure. We find that
although the Raman peaks of 2H-MoS2 become more prominent and the ones from the
1T/1T' phase fade after the laser exposure, the semiconducting properties of
the laser patterned devices are not fully restored and the laser treatment
ultimately leads to degradation of the transport channel
Thickness dependent interlayer transport in vertical MoS2 Josephson junctions
We report on observations of thickness dependent Josephson coupling and
multiple Andreev reflections (MAR) in vertically stacked molybdenum disulfide
(MoS2) - molybdenum rhenium (MoRe) Josephson junctions. MoRe, a chemically
inert superconductor, allows for oxide free fabrication of high transparency
vertical MoS2 devices. Single and bilayer MoS2 junctions display relatively
large critical currents (up to 2.5 uA) and the appearance of sub-gap structure
given by MAR. In three and four layer thick devices we observe orders of
magnitude lower critical currents (sub-nA) and reduced quasiparticle gaps due
to proximitized MoS2 layers in contact with MoRe. We anticipate that this
device architecture could be easily extended to other 2D materials.Comment: 18 pages, 6 figures including Supporting Informatio
Isolation and characterization of few-layer black phosphorus
Isolation and characterization of mechanically exfoliated black phosphorus
flakes with a thickness down to two single-layers is presented. A modification
of the mechanical exfoliation method, which provides higher yield of atomically
thin flakes than conventional mechanical exfoliation, has been developed. We
present general guidelines to determine the number of layers using optical
microscopy, Raman spectroscopy and transmission electron microscopy in a fast
and reliable way. Moreover, we demonstrate that the exfoliated flakes are
highly crystalline and that they are stable even in free-standing form through
Raman spectroscopy and transmission electron microscopy measurements. A strong
thickness dependence of the band structure is found by density functional
theory calculations. The exciton binding energy, within an effective mass
approximation, is also calculated for different number of layers. Our
computational results for the optical gap are consistent with preliminary
photoluminescence results on thin flakes. Finally, we study the environmental
stability of black phosphorus flakes finding that the flakes are very
hydrophilic and that long term exposure to air moisture etches black phosphorus
away. Nonetheless, we demonstrate that the aging of the flakes is slow enough
to allow fabrication of field-effect transistors with strong ambipolar
behavior. Density functional theory calculations also give us insight into the
water-induced changes of the structural and electronic properties of black
phosphorus.Comment: 11 main figures, 7 supporting figure
- …