We report on observations of thickness dependent Josephson coupling and
multiple Andreev reflections (MAR) in vertically stacked molybdenum disulfide
(MoS2) - molybdenum rhenium (MoRe) Josephson junctions. MoRe, a chemically
inert superconductor, allows for oxide free fabrication of high transparency
vertical MoS2 devices. Single and bilayer MoS2 junctions display relatively
large critical currents (up to 2.5 uA) and the appearance of sub-gap structure
given by MAR. In three and four layer thick devices we observe orders of
magnitude lower critical currents (sub-nA) and reduced quasiparticle gaps due
to proximitized MoS2 layers in contact with MoRe. We anticipate that this
device architecture could be easily extended to other 2D materials.Comment: 18 pages, 6 figures including Supporting Informatio