625 research outputs found
Slow Light in Doppler Broadened Two level Systems
We show that the propagation of light in a Doppler broadened medium can be
slowed down considerably eventhough such medium exhibits very flat dispersion.
The slowing down is achieved by the application of a saturating counter
propagating beam that produces a hole in the inhomogeneous line shape. In
atomic vapors, we calculate group indices of the order of 10^3. The
calculations include all coherence effects.Comment: 6 pages, 5 figure
Price Effects of Sovereign Debt Auctions in the Euro-Zone: The Role of the Crisis
Exploring the period since the inception of the euro, we show that secondary-market yields on Italian public debt increase in anticipation of auctions of new issues and decrease after the auction, while no or a smaller such effect is present for German public debt. However, these yield movements on the Italian debt are largely confined to the period of the crisis since mid-2007. We also find that there is some tendency of the yield movements to be larger when the demand for the new issue is smaller relative to its supply. Our results are consistent with a framework in which a small group of primary dealers require compensation for inventory risk and this compensation needs to be higher when market uncertainty is larger. We also find that the secondary-market behaviour of series with a maturity close to the auctioned series, but for which there is no auction, is very similar to the secondary-market behaviour of the auctioned series. These findings support an explanation of yield movements based on the behaviour of primary dealers with limited risk-bearing capacity
Two-photon excitation dynamics in bound two-body Coulomb systems including ac Stark shift and ionization
One of the dominant systematic effects that shift resonance lines in high-precision measurements of twophoton transitions is the dynamic (ac) Stark shift. For suitable laser frequencies, the ac Stark shift acquires an imaginary part which corresponds to the rate of resonant one-photon ionization of electrons into a continuum state. At the current level of spectroscopic accuracy, the underlying time-dependent quantum dynamics governing the atomic two-photon excitation process must be well understood, and related considerations are the subject of the present paper. In order to illustrate the basic mechanisms in the transient regime, we investigate an analytically solvable model scenario for the population dynamics in the density matrix formalism and describe in detail how to generalize the corresponding equations of motion for individual experimental use. We also calculate the dynamic Stark shift for two-photon S-S and S-D transitions in bound two-body Coulomb systems and the corresponding two-photon transition matrix elements. In particular, we investigate transitions for which the 1S ground state or alternatively the metastable 2S state acts as the lower-energy state, and for which states with n </= 20 represent the upper states. Relativistic and radiative corrections to the excitation dynamics, and the corresponding limitations to the accuracy of the measurements, are briefly discussed. Our considerations suggest the general feasibility of a detection mechanism, offering high quantum efficiency, based on two-step three-photon resonant ionization spectroscopy, for large classes of experimentally relevant two-photon transitions in two-body Coulomb systems.Peer reviewedPhysic
Adsorption and Quantum Chemical Studies on the Inhibition Potentials of Some Thiosemicarbazides for the Corrosion of Mild Steel in Acidic Medium
Three thiosemicarbazides, namely 2-(2-aminophenyl)-N phenylhydrazinecarbothioamide (AP4PT), N,2-diphenylhydrazinecarbothioamide (D4PT) and 2-(2-hydroxyphenyl)-N-phenyl hydrazinecarbothioamide (HP4PT), were investigated as corrosion inhibitors for mild steel in H2SO4 solution using gravimetric and gasometric methods. The results revealed that they all inhibit corrosion and their % inhibition efficiencies (%IE) follow the order: AP4PT > HP4PT > D4PT. The %IE obtained from the gravimetric and gasometric experiments were in good agreement. The thermodynamic parameters obtained support a physical adsorption mechanism and the adsorption followed the Langmuir adsorption isotherm. Some quantum chemical parameters were calculated using different methods and correlated with the experimental %IE. Quantitative structure activity relationship (QSAR) approach was used on a composite index of some quantum chemical parameters to characterize the inhibition performance of the studied molecules. The results showed that the %IE were closely related to some of the quantum chemical parameters, but with varying degrees. The calculated/theoretical %IE of the molecules were found to be close to their experimental %IE. The local reactivity has been studied through the Fukui and condensed softness indices in order to predict both the reactive centers and to know the possible sites of nucleophilic and electrophilic attacks
Applying an Empirical Hydropathic Forcefield in Refinement May Improve Low-Resolution Protein X-Ray Crystal Structures
BACKGROUND: The quality of X-ray crystallographic models for biomacromolecules refined from data obtained at high-resolution is assured by the data itself. However, at low-resolution, >3.0 Å, additional information is supplied by a forcefield coupled with an associated refinement protocol. These resulting structures are often of lower quality and thus unsuitable for downstream activities like structure-based drug discovery. METHODOLOGY: An X-ray crystallography refinement protocol that enhances standard methodology by incorporating energy terms from the HINT (Hydropathic INTeractions) empirical forcefield is described. This protocol was tested by refining synthetic low-resolution structural data derived from 25 diverse high-resolution structures, and referencing the resulting models to these structures. The models were also evaluated with global structural quality metrics, e.g., Ramachandran score and MolProbity clashscore. Three additional structures, for which only low-resolution data are available, were also re-refined with this methodology. RESULTS: The enhanced refinement protocol is most beneficial for reflection data at resolutions of 3.0 Å or worse. At the low-resolution limit, ≥4.0 Å, the new protocol generated models with Cα positions that have RMSDs that are 0.18 Å more similar to the reference high-resolution structure, Ramachandran scores improved by 13%, and clashscores improved by 51%, all in comparison to models generated with the standard refinement protocol. The hydropathic forcefield terms are at least as effective as Coulombic electrostatic terms in maintaining polar interaction networks, and significantly more effective in maintaining hydrophobic networks, as synthetic resolution is decremented. Even at resolutions ≥4.0 Å, these latter networks are generally native-like, as measured with a hydropathic interactions scoring tool
Interference of H-bonding and substituent effects in nitro- and hydroxy-substituted salicylaldehydes
Two intramolecular interactions, i.e., (1) hydrogen bond and (2) substituent effect, were analyzed and compared. For this purpose, the geometry of 4- and 5-X-substituted salicylaldehyde derivatives (X = NO2, H or OH) was optimized by means of B3LYP/6-311 + G(d,p) and MP2/aug-cc-pVDZ methods. The results obtained allowed us to show that substituents (NO2 or OH) in the para or meta position with respect to either OH or CHO in H-bonded systems interact more strongly than in the case of di-substituted species: 4- and 3-nitrophenol or 4- and 3-hydroxybenzaldehyde by ∼31%. The substituent effect due to the intramolecular charge transfer from the para-counter substituent (NO2) to the proton-donating group (OH) is ∼35% greater than for the interaction of para-OH with the proton-accepting group (CHO). The total energy of H-bonding for salicylaldehyde, and its derivatives, is composed of two contributions: ∼80% from the energy of H-bond formation and ∼20% from the energy associated with reorganization of the electron structure of the systems in question
Synthesis of air‐stable, odorless thiophenol surrogates via Ni‐Catalyzed C−S cross‐coupling
Thiophenols are versatile synthetic intermediates whose practical appeal is marred by their air sensitivity, toxicity and extreme malodor. Herein we report an efficient catalytic method for the preparation of S-aryl isothiouronium salts, and demonstrate that these air-stable, odorless solids serve as user-friendly sources of thiophenols in synthesis. Diverse isothiouronium salts featuring synthetically useful functionality are readily accessible via nickelcatalyzed C-S cross-coupling of (hetero)aryl iodides and thiourea. Convenient, chromatography-free isolation of these salts is achieved via precipitation, allowing the methodology to be translated directly to large scales. Thiophenols are liberated from the corresponding isothiouronium salts upon treatment with a weak base, enabling an in situ release / S-functionalization strategy that entirely negates the need to isolate, purify or manipulate these noxious reagent
Optimized Hydrophobic Interactions and Hydrogen Bonding at the Target-Ligand Interface Leads the Pathways of Drug-Designing
Weak intermolecular interactions such as hydrogen bonding and hydrophobic interactions are key players in stabilizing energetically-favored ligands, in an open conformational environment of protein structures. However, it is still poorly understood how the binding parameters associated with these interactions facilitate a drug-lead to recognize a specific target and improve drugs efficacy. To understand this, comprehensive analysis of hydrophobic interactions, hydrogen bonding and binding affinity have been analyzed at the interface of c-Src and c-Abl kinases and 4-amino substituted 1H-pyrazolo [3, 4-d] pyrimidine compounds.In-silico docking studies were performed, using Discovery Studio software modules LigandFit, CDOCKER and ZDOCK, to investigate the role of ligand binding affinity at the hydrophobic pocket of c-Src and c-Abl kinase. Hydrophobic and hydrogen bonding interactions of docked molecules were compared using LigPlot program. Furthermore, 3D-QSAR and MFA calculations were scrutinized to quantify the role of weak interactions in binding affinity and drug efficacy.The in-silico method has enabled us to reveal that a multi-targeted small molecule binds with low affinity to its respective targets. But its binding affinity can be altered by integrating the conformationally favored functional groups at the active site of the ligand-target interface. Docking studies of 4-amino-substituted molecules at the bioactive cascade of the c-Src and c-Abl have concluded that 3D structural folding at the protein-ligand groove is also a hallmark for molecular recognition of multi-targeted compounds and for predicting their biological activity. The results presented here demonstrate that hydrogen bonding and optimized hydrophobic interactions both stabilize the ligands at the target site, and help alter binding affinity and drug efficacy
- …