5,264 research outputs found

    Three dimensional inelastic finite element analysis of laminated composites

    Get PDF
    Formulations of the inelastic response of laminated composites to thermal and mechanical loading are used as the basis for development of the computer NALCOM (Nonlinear Analysis of Laminated Composites) computer program which uses a fully three dimensional isoparametric finite element with 24 nodes and 72 degrees of freedom. An incremental solution is performed with nonlinearities introduced as pseudoloads computed for initial strains. Equilibrium iteration may be performed at every step. Elastic and elastic-plastic response of boron/epoxy and graphite/epoxy graphite/epoxy and problems of curing 0/90 sub s Gr/Ep laminates with and without circular holes are analyzed. Mechanical loading of + or - 45sub s Gr/Ep laminates is modeled and symmetry conditions which exist in angle-ply laminates are discussed. Results are compared to experiments and other analytical models when possible. All models are seen to agree reasonably well with experimetnal results for off-axis tensile coupons. The laminate analyses show the three dimensional effects which are present near holes and free corners

    A penalty approach for nonlinear optimization with discrete design variables

    Get PDF
    Introduced here is a simple approach to minimization problems with discrete design variables by modifying the penaly function approach of converting the constrained problems into sequential unconstrained minimization technique (SUMT) problems. It was discovered, during the course of the present work, that a similar idea was suggested by Marcal and Gellatly. However, no further work has been encountered. A brief description of the SUMT is presented. The form of the penalty function for the discrete-valued design variables and strategy used for the implementation of the procedure is discussed next. Finally, several design examples are used to demonstrate the procedure, and results are compared with the ones available in the literature

    Compression of thick laminated composite beams with initial impact-like damage

    Get PDF
    While the study of compression after impact of laminated composites has been under consideration for many years, the complexity of the damage initiated by low velocity impact has not lent itself to simple predictive models for compression strength. The damage modes due to non-penetrating, low velocity impact by large diameter objects can be simulated using quasi-static three-point bending. The resulting damage modes are less coupled and more easily characterized than actual impact damage modes. This study includes the compression testing of specimens with well documented initial damage states obtained from three-point bend testing. Compression strengths and failure modes were obtained for quasi-isotropic stacking sequences from 0.24 to 1.1 inches thick with both grouped and interspersed ply stacking. Initial damage prior to compression testing was divided into four classifications based on the type, extent, and location of the damage. These classifications are multiple through-thickness delaminations, isolated delamination, damage near the surface, and matrix cracks. Specimens from each classification were compared to specimens tested without initial damage in order to determine the effects of the initial damage on the final compression strength and failure modes. A finite element analysis was used to aid in the understanding and explanation of the experimental results

    Finite element based micro-mechanics modeling of textile composites

    Get PDF
    Textile composites have the advantage over laminated composites of a significantly greater damage tolerance and resistance to delamination. Currently, a disadvantage of textile composites is the inability to examine the details of the internal response of these materials under load. Traditional approaches to the study fo textile based composite materials neglect many of the geometric details that affect the performance of the material. The present three dimensional analysis, based on the representative volume element (RVE) of a plain weave, allows prediction of the internal details of displacement, strain, stress, and failure quantities. Through this analysis, the effect of geometric and material parameters on the aforementioned quantities are studied

    Exploring Food Detection using CNNs

    Full text link
    One of the most common critical factors directly related to the cause of a chronic disease is unhealthy diet consumption. In this sense, building an automatic system for food analysis could allow a better understanding of the nutritional information with respect to the food eaten and thus it could help in taking corrective actions in order to consume a better diet. The Computer Vision community has focused its efforts on several areas involved in the visual food analysis such as: food detection, food recognition, food localization, portion estimation, among others. For food detection, the best results evidenced in the state of the art were obtained using Convolutional Neural Network. However, the results of all these different approaches were gotten on different datasets and therefore are not directly comparable. This article proposes an overview of the last advances on food detection and an optimal model based on GoogLeNet Convolutional Neural Network method, principal component analysis, and a support vector machine that outperforms the state of the art on two public food/non-food datasets

    Finite temperature excitations of a trapped Bose gas

    Full text link
    We present a detailed study of the temperature dependence of the condensate and noncondensate density profiles of a Bose-condensed gas in a parabolic trap. These quantitites are calculated self-consistently using the Hartree-Fock-Bogoliubov equations within the Popov approximation. Below the Bose-Einstein transition the excitation frequencies have a realtively weak temperature dependence even though the condensate is strongly depleted. As the condensate density goes to zero through the transition, the excitation frequencies are strongly affected and approach the frequencies of a noninteracting gas in the high temperature limit.Comment: 4 pages, Latex, 4 postscript figures. Submitted to Physical Review Letter

    Superfluidity of bosons on a deformable lattice

    Full text link
    We study the superfluid properties of a system of interacting bosons on a lattice which, moreover, are coupled to the vibrational modes of this lattice, treated here in terms of Einstein phonon model. The ground state corresponds to two correlated condensates: that of the bosons and that of the phonons. Two competing effects determine the common collective soundwave-like mode with sound velocity vv, arising from gauge symmetry breaking: i) The sound velocity v0v_0 (corresponding to a weakly interacting Bose system on a rigid lattice) in the lowest order approximation is reduced due to reduction of the repulsive boson-boson interaction, arising from the attractive part of phonon mediated interaction in the static limit. ii) the second order correction to the sound velocity is enhanced as compared to the one of bosons on a rigid lattice when the the boson-phonon interaction is switched on due to the retarded nature of phonon mediated interaction. The overall effect is that the sound velocity is practically unaffected by the coupling with phonons, indicating the robustness of the superfluid state. The induction of a coherent state in the phonon system, driven by the condensation of the bosons could be of experimental significance, permitting spectroscopic detections of superfluid properties of the bosons. Our results are based on an extension of the Beliaev - Popov formalism for a weakly interacting Bose gas on a rigid lattice to that on a deformable lattice with which it interacts.Comment: 12 pages, 14 figures, to appear in Phys. Rev.

    Vibrotactile Signal Generation from Texture Images or Attributes using Generative Adversarial Network

    Full text link
    Providing vibrotactile feedback that corresponds to the state of the virtual texture surfaces allows users to sense haptic properties of them. However, hand-tuning such vibrotactile stimuli for every state of the texture takes much time. Therefore, we propose a new approach to create models that realize the automatic vibrotactile generation from texture images or attributes. In this paper, we make the first attempt to generate the vibrotactile stimuli leveraging the power of deep generative adversarial training. Specifically, we use conditional generative adversarial networks (GANs) to achieve generation of vibration during moving a pen on the surface. The preliminary user study showed that users could not discriminate generated signals and genuine ones and users felt realism for generated signals. Thus our model could provide the appropriate vibration according to the texture images or the attributes of them. Our approach is applicable to any case where the users touch the various surfaces in a predefined way.Comment: accepted for EuroHaptics 2018: Haptics: Science, Technology, and Applications, pp.25-3

    The Highly Miniaturised Radiation Monitor

    Full text link
    We present the design and preliminary calibration results of a novel highly miniaturised particle radiation monitor (HMRM) for spacecraft use. The HMRM device comprises a telescopic configuration of active pixel sensors enclosed in a titanium shield, with an estimated total mass of 52 g and volume of 15 cm3^3. The monitor is intended to provide real-time dosimetry and identification of energetic charged particles in fluxes of up to 108^8 cm−2^{-2} s−1^{-1} (omnidirectional). Achieving this capability with such a small instrument could open new prospects for radiation detection in space.Comment: 17 pages, 15 figure

    The structured environments of embedded star-forming cores. PACS and SPIRE mapping of the enigmatic outflow source UYSO 1

    Full text link
    The intermediate-mass star-forming core UYSO 1 has previously been found to exhibit intriguing features. While deeply embedded and previously only identified by means of its (sub-)millimeter emission, it drives two powerful, dynamically young, molecular outflows. Although the process of star formation has obviously started, the chemical composition is still pristine. We present Herschel PACS and SPIRE continuum data of this presumably very young region. The now complete coverage of the spectral energy peak allows us to precisely constrain the elevated temperature of 26 - 28 K for the main bulge of gas associated with UYSO1, which is located at the interface between the hot HII region Sh 2-297 and the cold dark nebula LDN 1657A. Furthermore, the data identify cooler compact far-infrared sources of just a few solar masses, hidden in this neighbouring dark cloud.Comment: accepted contribution for the forthcoming Herschel Special Issue of A&A, 5 pages (will appear as 4-page letter in the journal), 6 figure file
    • …
    corecore