416 research outputs found

    Reversible Electrical Reduction and Oxidation of Graphene Oxide

    Get PDF
    Cataloged from PDF version of article.We demonstrate that graphene oxide can be reversibly reduced and oxidized using electrical stimulus. Controlled reduction and oxidation in two-terminal devices containing multilayer graphene oxide films are shown to result in switching between partially reduced graphene oxide and graphene, a process which modifies the electronic and optical properties. High-resolution tunneling current and electrostatic force imaging reveal that graphene oxide islands are formed on multilayer graphene, turning graphene into a self-assembled heterostructure random nanomesh. Charge storage and resistive switching behavior is observed in two-terminal devices made of multilayer graphene oxide films, correlated with electrochromic effects. Tip-induced reduction and oxidation are also demonstrated. Results are discussed in terms of thermodynamics of oxidation and reduction reactions

    Grating coupler integrated photodiodes for plasmon resonance based sensing

    Get PDF
    Cataloged from PDF version of article.In this work, we demonstrate an integrated sensor combining a grating-coupled plasmon resonance surface with a planar photodiode. Plasmon enhanced transmission is employed as a sensitive refractive index (RI) sensing mechanism. Enhanced transmission of light is monitored via the integrated photodiode by tuning the angle of incidence of a collimated beam near the sharp plasmon resonance condition. Slight changes of the effective refractive index (RI) shift the resonance angle, resulting in a change in the photocurrent. Owing to the planar sensing mechanism, the design permits a high areal density of sensing spots. In the design, absence of holes that facilitate resonant transmission of light, allows an easy-to-implement fabrication procedure and relative insensitivity to fabrication errors. Theoretical and experimental results agree well. An equivalent long-term RI noise of 6.3 x 10(-6) RIU/root Hz is obtained by using an 8 mW He-Ne laser, compared to a shot-noise limited theoretical sensitivity of 5.61 x 10(-9) RIU/root Hz. The device features full benefits of grating-coupled plasmon resonance, such as enhancement of sensitivity for non-zero azimuthal angle of incidence. Further sensitivity enhancement using balanced detection and optimal plasmon coupling conditions are discussed

    Raman Enhancement on a Broadband Meta-Surface

    Get PDF
    Cataloged from PDF version of article.Plasmonic metamaterials allow confinement of light to deep subwavelength dimensions, while allowing for the tailoring of dispersion and electromagnetic mode density to enhance specific photonic properties. Optical resonances of plasmonic molecules have been extensively investigated; however, benefits of strong coupling of dimers have been overlooked. Here, we construct a plasmonic meta-surface through coupling of diatomic plasmonic molecules which contain a heavy and light meta-atom. Presence and coupling of two distinct types of localized modes in the plasmonic molecule allow formation and engineering of a rich band structure in a seemingly simple and common geometry, resulting in a broadband and quasi-omni-directional meta-surface. Surface-enhanced Raman scattering benefits from the simultaneous presence of plasmonic resonances at the excitation and scattering frequencies, and by proper design of the band structure to satisfy this condition, highly repeatable and spatially uniform Raman enhancement is demonstrated. On the basis of calculations of the field enhancement distribution within a unit cell, spatial uniformity of the enhancement at the nanoscale is discussed. Raman scattering constitutes an example of nonlinear optical processes, where the wavelength conversion during scattering may be viewed as a photonic transition between the bands of the meta-material

    Electrochemically tunable ultrafast optical response of graphene oxide

    Get PDF
    Cataloged from PDF version of article.We demonstrate reversible and irreversible changes in the ultrafast optical response of multilayer graphene oxide thin films upon electrical and optical stimulus. The reversible effects are due to electrochemical modification of graphene oxide, which allows tuning of the optical response by externally applied bias. Increasing the degree of reduction in graphene oxide causes excited state absorption to gradually switch to saturable absorption for shorter probe wavelengths. Spectral and temporal properties as well as the sign of the ultrafast response can be tuned either by changing the applied bias or exposing to high intensity femtosecond pulses. © 2011 American Institute of Physics

    Plasmonic absorbers for multispectral and broadband absorption

    Get PDF
    We present polarization dependent multispectral and broadband plasmonic absorbers in the visible spectrum. The spectral characteristics of these structures are tunable over a broad spectrum. Experimental results are verified with the FDTD and RCWA analysis methods. These structures are used as surface enhanced raman spectroscopy(SERS) substrates. Designed structures have resonances that span the Raman Stokes and excitation wavelength. Such structures can be used for energy, LED and other spectroscopy applications. © 2012 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE)

    Tuning optical discs for plasmonic applications

    Get PDF
    We present simple physical and chemical procedures that allow tuning and modification of the topography of gratings present in optical storage discs into geometries optimal for grating coupled plasmon resonance excitation. After proper metal coating, the tuned surfaces exhibit sharp plasmon resonances that can be excited at wavelengths ranging from 260 nm to over 2.7 μm with relatively high quality factors. As an immediate exemplary application, use of such optimized gratings in aqueous medium for refractive index measurement is demonstrated. © Springer Science + Business Media, LLC 2009

    Performance of a plastic scintillator developed using styrene monomer polymerization

    Full text link
    This paper presents a newly developed plastic scintillator produced in collaboration with Turkiye Energy, Nuclear and Mineral Research Agency (TENMAK). The scintillator is manufactured using thermal polymerization of commercially available styrene monomer. The absorption spectrum of the scintillator exhibited two absorption bands at 225 nm and 340 nm, with an absorption edge observed at 410 nm. The wavelength of the emitted light was measured in the range of 400-800 nm, with a maximum intensity at 427 nm. Monoenergetic electrons from the 137Cs source were used to evaluate the characteristics of the new scintillator, particularly its light yield. As the light readout the MAPD-3NM type silicon photomultiplier array (4 x 4) with an active area of 15 x 15 mm2, assembled using single MAPDs with an active area of 3.7 x 3.7 mm2, was used. The light yield of the scintillator was determined to be 6134 photons/MeV. In addition, the efficiency of the scintillator for gamma rays with an energy of 662 keV was found to be approximately 1.8 %. A CmBe neutron source was employed to evaluate its fast neutron detection performance. However, neutron/gamma discrimination using pulse shape discrimination (charge integration) method was not observed. The results demonstrate the potential of a newly produced plastic scintillator for various applications, particularly in radiation monitoring and detection systems.Comment: 7 pages, 7 figure

    Impact of antimicrobial drug restrictions on doctors' behaviors

    Get PDF
    Background/aim: Broad-spectrum antibiotics have become available for use only with the approval of infectious disease specialists (IDSs) since 2003 in Turkey. This study aimed to analyze the tendencies of doctors who are not disease specialists (non-IDSs) towards the restriction of antibiotics.Materials and methods: A questionnaire form was prepared, which included a total of 22 questions about the impact of antibiotic restriction (AR) policy, the role of IDSs in the restriction, and the perception of this change in antibiotic consumption. The questionnaire was completed by each participating physician.Results: A total of 1906 specialists from 20 cities in Turkey participated in the study. Of those who participated, 1271 (67.5%) had 5 years of occupational experience in their branch expressed that they followed the antibiotic guidelines more strictly than the JSs (P < 0.05) and 755 of physicians (88%) and 720 of surgeons (84.6%) thought that the AR policy was necessary and useful (P < 0.05).Conclusion: This study indicated that the AR policy was supported by most of the specialists. Physicians supported this restriction policy more so than surgeons did

    The first small-molecule inhibitors of members of the ribonuclease E family

    Get PDF
    The Escherichia coli endoribonuclease RNase E is central to the processing and degradation of all types of RNA and as such is a pleotropic regulator of gene expression. It is essential for growth and was one of the first examples of an endonuclease that can recognise the 5′-monophosphorylated ends of RNA thereby increasing the efficiency of many cleavages. Homologues of RNase E can be found in many bacterial families including important pathogens, but no homologues have been identified in humans or animals. RNase E represents a potential target for the development of new antibiotics to combat the growing number of bacteria that are resistant to antibiotics in use currently. Potent small molecule inhibitors that bind the active site of essential enzymes are proving to be a source of potential drug leads and tools to dissect function through chemical genetics. Here we report the use of virtual high-throughput screening to obtain small molecules predicted to bind at sites in the N-terminal catalytic half of RNase E. We show that these compounds are able to bind with specificity and inhibit catalysis of Escherichia coli and Mycobacterium tuberculosis RNase E and also inhibit the activity of RNase G, a paralogue of RNase E
    corecore