203 research outputs found

    Comparison of an extended-release formulation of granisetron (APF530) versus palonosetron for the prevention of chemotherapy-induced nausea and vomiting associated with moderately or highly emetogenic chemotherapy: results of a prospective, randomized, double-blind, noninferiority phase 3 trial

    Get PDF
    PURPOSE: Subcutaneous APF530 provides controlled sustained release of granisetron to prevent acute (0-24 h) and delayed (24-120 h) chemotherapy-induced nausea and vomiting (CINV). This randomized, double-blind phase 3 trial compared APF530 and palonosetron in preventing acute and delayed CINV after moderately (MEC) or highly emetogenic chemotherapy (HEC). METHODS: Patients receiving single-day MEC or HEC received single-dose APF530 250 or 500 mg subcutaneously (SC) (granisetron 5 or 10 mg) or intravenous palonosetron 0.25 mg. Primary objectives were to establish APF530 noninferiority to palonosetron for preventing acute CINV following MEC or HEC and delayed CINV following MEC and to determine APF530 superiority to palonosetron for preventing delayed CINV following HEC. The primary efficacy end point was complete response (CR [using CI difference for APF530 - palonosetron]). A lower confidence bound greater than -15 % indicated noninferiority. RESULTS: In the modified intent-to-treat population (MEC = 634; HEC = 707), both APF530 doses were noninferior to palonosetron in preventing acute CINV after MEC (CRs 74.8 % [-9.8, 9.3] and 76.9 % [-7.5, 11.4], respectively, vs. 75.0 % palonosetron) and after HEC (CRs 77.7 % [-11.5, 5.5] and 81.3 % [-7.7, 8.7], respectively, vs. 80.7 % palonosetron). APF530 500 mg was noninferior to palonosetron in preventing delayed CINV after MEC (CR 58.5 % [-9.5, 12.1] vs. 57.2 % palonosetron) but not superior in preventing delayed CINV after HEC. Adverse events were generally mild and unrelated to treatment, the most common (excluding injection-site reactions) being constipation. CONCLUSIONS: A single subcutaneous APF530 injection offers a convenient alternative to palonosetron for preventing acute and delayed CINV after MEC or HEC

    Gravito-electromagnetic analogies

    Full text link
    We reexamine and further develop different gravito-electromagnetic (GEM) analogies found in the literature, and clarify the connection between them. Special emphasis is placed in two exact physical analogies: the analogy based on inertial fields from the so-called "1+3 formalism", and the analogy based on tidal tensors. Both are reformulated, extended and generalized. We write in both formalisms the Maxwell and the full exact Einstein field equations with sources, plus the algebraic Bianchi identities, which are cast as the source-free equations for the gravitational field. New results within each approach are unveiled. The well known analogy between linearized gravity and electromagnetism in Lorentz frames is obtained as a limiting case of the exact ones. The formal analogies between the Maxwell and Weyl tensors are also discussed, and, together with insight from the other approaches, used to physically interpret gravitational radiation. The precise conditions under which a similarity between gravity and electromagnetism occurs are discussed, and we conclude by summarizing the main outcome of each approach.Comment: 60 pages, 2 figures. Improved version (compared to v2) with some re-write, notation improvements and a new figure that match the published version; expanded compared to the published version to include Secs. 2.3 and

    A nonlinear scalar model of extreme mass ratio inspirals in effective field theory I. Self force through third order

    Full text link
    The motion of a small compact object in a background spacetime is investigated in the context of a model nonlinear scalar field theory. This model is constructed to have a perturbative structure analogous to the General Relativistic description of extreme mass ratio inspirals (EMRIs). We apply the effective field theory approach to this model and calculate the finite part of the self force on the small compact object through third order in the ratio of the size of the compact object to the curvature scale of the background (e.g., black hole) spacetime. We use well-known renormalization methods and demonstrate the consistency of the formalism in rendering the self force finite at higher orders within a point particle prescription for the small compact object. This nonlinear scalar model should be useful for studying various aspects of higher-order self force effects in EMRIs but within a comparatively simpler context than the full gravitational case. These aspects include developing practical schemes for higher order self force numerical computations, quantifying the effects of transient resonances on EMRI waveforms and accurately modeling the small compact object's motion for precise determinations of the parameters of detected EMRI sources.Comment: 30 pages, 8 figure

    Center of mass, spin supplementary conditions, and the momentum of spinning particles

    Full text link
    We discuss the problem of defining the center of mass in general relativity and the so-called spin supplementary condition. The different spin conditions in the literature, their physical significance, and the momentum-velocity relation for each of them are analyzed in depth. The reason for the non-parallelism between the velocity and the momentum, and the concept of "hidden momentum", are dissected. It is argued that the different solutions allowed by the different spin conditions are equally valid descriptions for the motion of a given test body, and their equivalence is shown to dipole order in curved spacetime. These different descriptions are compared in simple examples.Comment: 45 pages, 7 figures. Some minor improvements, typos fixed, signs in some expressions corrected. Matches the published version. Published as part of the book "Equations of Motion in Relativistic Gravity", D. Puetzfeld et al. (eds.), Fundamental Theories of Physics 179, Springer, 201

    Safety and efficacy of intra-arterial fibrinolytics as adjunct to mechanical thrombectomy : a systematic review and meta-analysis of observational data

    Get PDF
    Background Achieving the best possible reperfusion is a key determinant of clinical outcome after mechanical thrombectomy (MT). However, data on the safety and efficacy of intra-arterial (IA) fibrinolytics as an adjunct to MT with the intention to improve reperfusion are sparse. Methods We performed a PROSPERO-registered (CRD42020149124) systematic review and meta-analysis accessing MEDLINE, PubMed, and Embase from January 1, 2000 to January 1, 2020. A random-effect estimate (Mantel-Haenszel) was computed and summary OR with 95% CI were used as a measure of added IA fibrinolytics versus control on the risk of symptomatic intracranial hemorrhage (sICH) and secondary endpoints (modified Rankin ScalePeer reviewe

    Malten, a new synthetic molecule showing in vitro antiproliferative activity against tumour cells and induction of complex DNA structural alterations

    Get PDF
    Background: Hydroxypyrones represent several classes of molecules known for their high synthetic versatility. This family of molecules shows several interesting pharmaceutical activities and is considered as a promising source of new anti neoplastic compounds. Methods: In the quest to identify new potential anti cancer agents, a new maltol (3-hydroxy-2-methyl-4-pyrone)-derived molecule, named malten (N,N′-bis((3-hydroxy-4-pyron-2-yl)methyl)-N,N′-dimethylethylendiamine), has been synthesised and analysed at both biological and molecular levels for its antiproliferative activity in eight tumour cell lines. Results: Malten exposure led to a dose-dependent reduction in cell survival in all the neoplastic models studied. Sublethal concentrations of malten induce profound cell cycle changes, particularly affecting the S and/or G2-M phases, whereas exposure to lethal doses causes the induction of programmed cell death (apopotosis). The molecular response to malten was also investigated in two biological models: JURKAT and U937 cells. It showed the modulation of genes having key roles in cell cycle progression and apoptosis. Finally, as part of the effort to clarify the action mechanism, we showed that malten is able to impair DNA electrophoretic mobility and drastically reduce both PCR amplificability and fragmentation susceptibility of DNA. Conclusion: Taken together, these results show that malten may exert its antiproliferative activity through the induction of complex DNA structural modifications. This evidence, together with the high synthetic versatility of maltol-derived compounds, makes malten an interesting molecular scaffold for the future design of new potential anticancer agents

    The Role of Histone H4 Biotinylation in the Structure of Nucleosomes

    Get PDF
    Background: Post-translational modifications of histones play important roles in regulating nucleosome structure and gene transcription. It has been shown that biotinylation of histone H4 at lysine-12 in histone H4 (K12Bio-H4) is associated with repression of a number of genes. We hypothesized that biotinylation modifies the physical structure of nucleosomes, and that biotin-induced conformational changes contribute to gene silencing associated with histone biotinylation. Methodology/Principal Findings: To test this hypothesis we used atomic force microscopy to directly analyze structures of nucleosomes formed with biotin-modified and non-modified H4. The analysis of the AFM images revealed a 13% increase in the length of DNA wrapped around the histone core in nucleosomes with biotinylated H4. This statistically significant (p,0.001) difference between native and biotinylated nucleosomes corresponds to adding approximately 20 bp to the classical 147 bp length of nucleosomal DNA. Conclusions/Significance: The increase in nucleosomal DNA length is predicted to stabilize the association of DNA with histones and therefore to prevent nucleosomes from unwrapping. This provides a mechanistic explanation for the gene silencing associated with K12Bio-H4. The proposed single-molecule AFM approach will be instrumental for studying the effects of various epigenetic modifications of nucleosomes, in addition to biotinylation

    Local Absence of Secondary Structure Permits Translation of mRNAs that Lack Ribosome-Binding Sites

    Get PDF
    The initiation of translation is a fundamental and highly regulated process in gene expression. Translation initiation in prokaryotic systems usually requires interaction between the ribosome and an mRNA sequence upstream of the initiation codon, the so-called ribosome-binding site (Shine-Dalgarno sequence). However, a large number of genes do not possess Shine-Dalgarno sequences, and it is unknown how start codon recognition occurs in these mRNAs. We have performed genome-wide searches in various groups of prokaryotes in order to identify sequence elements and/or RNA secondary structural motifs that could mediate translation initiation in mRNAs lacking Shine-Dalgarno sequences. We find that mRNAs without a Shine-Dalgarno sequence are generally less structured in their translation initiation region and show a minimum of mRNA folding at the start codon. Using reporter gene constructs in bacteria, we also provide experimental support for local RNA unfoldedness determining start codon recognition in Shine-Dalgarno–independent translation. Consistent with this, we show that AUG start codons reside in single-stranded regions, whereas internal AUG codons are usually in structured regions of the mRNA. Taken together, our bioinformatics analyses and experimental data suggest that local absence of RNA secondary structure is necessary and sufficient to initiate Shine-Dalgarno–independent translation. Thus, our results provide a plausible mechanism for how the correct translation initiation site is recognized in the absence of a ribosome-binding site

    Single-dose palonosetron for prevention of chemotherapy-induced nausea and vomiting in patients with aggressive non-Hodgkin's lymphoma receiving moderately emetogenic chemotherapy containing steroids: results of a phase II study from the Gruppo Italiano per lo Studio dei Linfomi (GISL)

    Get PDF
    PURPOSE: The control of nausea and vomiting induced by chemotherapy is paramount for overall treatment success in cancer patients. Antiemetic therapy during chemotherapy in lymphoma patients generally consists of anti-serotoninergic drugs and dexamethasone. The aim of this trial was to evaluate the efficacy of a single dose of palonosetron, a second-generation serotonin type 3 (5-HT(3)) receptor antagonist, in patients with aggressive non-Hodgkin's lymphoma receiving moderately emetogenic chemotherapy (MEC) containing steroids. METHODS: Patients received a single intravenous bolus of palonosetron (0.25 mg) before administration of chemotherapy. Complete response (CR) defined as no vomiting and no rescue therapy during overall phase (0-120 h) was the primary endpoint. Complete control (CC) defined as CR and only mild nausea was a secondary endpoint. RESULTS: Eighty-six evaluable patients entered in the study. A CR was observed in 74 patients (86.0%) during the overall phase; the CR during the acute (0-24 h) and delayed (24-120 h) phases was 90.7% and 88.4%, respectively. CC was 89.5% during the acute and 84.9% during the delayed phase; the overall CC was 82.6%. CONCLUSIONS: This was the first trial, which demonstrated the efficacy of a single dose of palonosetron in control CINV in patients with aggressive non-Hodgkin's lymphoma receiving MEC regimen containing steroids
    • …
    corecore