6,844 research outputs found

    A Piezoelectric Plethysmograph Sensor Based on a Pt Wire Implanted Lead Lanthanum Zirconate Titanate Bulk Ceramic

    Get PDF
    This work reports on the development of a Lead Lanthanum Zirconate Titanate (PLZT) bulk ferroelectric poled ceramic structure as a Piezoelectric Plethysmograph (PZPG) sensor. The ceramic was implanted during its fabrication with a platinum (Pt) wire which works as an internal electrode. The ceramic was then submitted to an experimental setup in order to validate and determine the Pt-wire mechanical effects. This PZPG sensor was also mounted on a finger splint in order to measure the blood flow that results from the pulsations of blood occurring with each heartbeat. Fingertip pulses were recorded jointly with an ECG signal from a 25 year old male to compare the time shift; the PZPG sensor guarantees the electrical isolation of the patient. The proposed PZPG has several advantages: it can be adjusted for fingertip measurements, but it can easily be extended by means of spare bands, therefore making possible PZPG measurements from different body locations, e.g., forehead, forearm, knee, neck, etc

    A new perspective of the Alboran Upwelling System reconstruction during the Marine Isotope Stage 11: A high-resolution coccolithophore record

    Get PDF
    A high-resolution study of the MIS 12/MIS 11 transition and the MIS 11 (430–376 kyr) coccolithophore assemblages at Ocean Drilling Program Site 977 was conducted to reconstruct the palaeoceanographic and climatic changes in the Alboran Sea from the variability in surface water conditions. The nannofossil record was integrated with the planktonic oxygen and carbon stable isotopes, as well as the Uk'37 Sea Surface Temperature (SST) at the studied site during the investigated interval. The coccolithophore primary productivity, reconstructed from the PPP (primary productivity proxy = absolute values of Gephyrocapsa caribbeanica + small Gephyrocapsa group) revealed pronounced fluctuations, that were strongly associated with variations in the intensity of the regional Alboran Upwelling System. The comparison of the nannoplankton record with opal phytolith content for the studied site and the already available pollen record at the nearby Integrated Ocean Drilling Program Site U1385, suggests an association of the upwelling dynamics with the variability of the North Atlantic Oscillation-like (NAO-like) phase. High PPP during positive (+) NAO-like phases is the result of intensified upwelling, owing to the complete development of the surface hydrological structures at the Alboran Sea. This scenario was identified during the MIS 12/MIS 11 transition (428-422 kyr), the late MIS 11c (405-397 kyr), and MIS11 b to MIS 11a (397-376 kyr). Two short-term minima in the PPP and SST were observed during MIS 11 b and were coeval with the North Atlantic Heinrich-type (Ht) events Ht3 (∼390 kyr) and Ht2 (∼384 kyr). Increased abundance of the subpolar Coccolithus pelagicus subsp. pelagicus and Gephyrocapsa muellerae was consistent with the inflow of cold surface waters into the Mediterranean Sea during the Ht events. Lowered PPP during negative (−) NAO-like phases is the result of moderate upwelling by the incomplete development of surface hydrological structures at the Alboran Sea. This scenario is expressed during the early MIS 11c (422-405 kyr). Overall, the results of our study provide evidence of the important role of atmospheric circulation patterns in the North Atlantic region for controlling phytoplankton primary production and oceanographic circulation dynamics in the Western Mediterranean during MIS 11

    The Large Aperture GRB Observatory

    Full text link
    The Large Aperture GRB Observatory (LAGO) is aiming at the detection of the high energy (around 100 GeV) component of Gamma Ray Bursts, using the single particle technique in arrays of Water Cherenkov Detectors (WCD) in high mountain sites (Chacaltaya, Bolivia, 5300 m a.s.l., Pico Espejo, Venezuela, 4750 m a.s.l., Sierra Negra, Mexico, 4650 m a.s.l). WCD at high altitude offer a unique possibility of detecting low gamma fluxes in the 10 GeV - 1 TeV range. The status of the Observatory and data collected from 2007 to date will be presented.Comment: 4 pages, proceeding of 31st ICRC 200

    Water Cherenkov Detectors response to a Gamma Ray Burst in the Large Aperture GRB Observatory

    Full text link
    In order to characterise the behaviour of Water Cherenkov Detectors (WCD) under a sudden increase of 1 GeV - 1 TeV background photons from a Gamma Ray Burst (GRB), simulations were conducted and compared to data acquired by the WCD of the Large Aperture GRB Observatory (LAGO). The LAGO operates arrays of WCD at high altitude to detect GRBs using the single particle technique. The LAGO sensitivity to GRBs is derived from the reported simulations of the gamma initiated particle showers in the atmosphere and the WCD response to secondaries.Comment: 5 pages, proceeding of the 31st ICRC 200

    Quantic Analysis of Formation of a Biomaterial of Latex, Retinol, and Chitosan for Biomedical Applications

    Full text link
    The present work shows the quantum theoretical analysis and practical tests for the formation of a homogeneous mixture with Latex (Lx), Chitosan (Qn) and Retinol (Rl), which work as possible biomaterial for regeneration of epithelial tissue. Lx, Qn, and Rl compounds molecules were designed through Hyperchem to get the coefficient of electrostatic potential calculations. The amounts used to create the biomaterial are minimum depending on the quantities of molecules used in chemical design. A positive calculation was obtained for the reaction of these three compounds and the formation of the biomaterial in physical checking theory etc

    Fiber Optic Sensing System for Temperature and Gas Monitoring in Coal Waste Pile Combustion Environments

    Get PDF
    International audienceIt is presented an optical fiber sensing system projected to operate in the demanding conditions associated with coal waste piles in combustion. Distributed temperature measurement and spot gas sensing are requirements for such a system. A field prototype has been installed and is continuously gathering data, which will input a geological model of the coal waste piles in combustion aiming to understand their dynamics and evolution. Results are presented on distributed temperature and ammonia measurement, being noticed any significant methane emission in the short time period considered. Carbon dioxide is also a targeted gas for measurement, with validated results available soon. The assessment of this technology as an effective and reliable tool to address the problem of monitoring coal waste piles in combustion opens the possibility of its widespread application in view of the worldwide presence of coal related fires
    corecore