12,095 research outputs found

    Phase-matched four wave mixing and quantum beam splitting of matter waves in a periodic potential

    Full text link
    We show that the dispersion properties imposed by an external periodic potential ensure both energy and quasi-momentum conservation such that correlated pairs of atoms can be generated by four wave mixing from a Bose-Einstein condensate moving in an optical lattice potential. In our numerical solution of the Gross-Pitaevskii equation, a condensate with initial quasi-momentum k_0 is transferred almost completely (>95%) into a pair of correlated atomic components with quasi-momenta k_1 and k_2, if the system is seeded with a smaller number of atoms with the appropriate quasi-momentum k_1.Comment: 4 pages, 4 figures, version accepted for publication in Phys. Rev. A, Rapid Communication

    Controllable diffusion of cold atoms in a harmonically driven and tilted optical lattice: Decoherence by spontaneous emission

    Full text link
    We have studied some transport properties of cold atoms in an accelerated optical lattice in the presence of decohering effects due to spontaneous emission. One new feature added is the effect of an external AC drive. As a result we obtain a tunable diffusion coefficient and it's nonlinear enhancement with increasing drive amplitude. We report an interesting maximum diffusion condition.Comment: 16 pages, 7 figures, revised versio

    Domain-wall profile in the presence of anisotropic exchange interactions: Effective on-site anisotropy

    Get PDF
    Starting from a D-dimensional XXZ ferromagnetic Heisenberg model in an hypercubic lattice, it is demonstrated that the anisotropy in the exchange coupling constant leads to a D-dependent effective on-site anisotropy interaction often ignored for D>1. As a result the effective width of the wall depends on the dimensionality of the system. It is shown that the effective one-dimensional Hamiltonian is not the one-dimensional XXZ version as assumed in previous theoretical work. We derive a new expression for the wall profile that generalizes the standard Landau-Lifshitz form. Our results are found to be in very good agreement with earlier numerical work using the Monte Carlo method. Preceding theories concerning the domain wall contribution to magnetoresistance have considered the role of D only through the modification of the density of states in the electronic band structure. This Brief Report reveals that the wall profile itself contains an additional D dependence for the case of anisotropic exchange interactions.Comment: 4 pages; new title and abstract; 1 figure comparing our results with earlier numerical work; a more general model containing the usual on-site anisotropy; new remarks and references on the following two topics: (a) experimental evidence for the existence of spin exchange anisotropy, and (b) preceding theories concerning the domain wall contribution to magnetoresistance; to appear in Phys. Rev.

    CPT Violation Implies Violation of Lorentz Invariance

    Get PDF
    An interacting theory that violates CPT invariance necessarily violates Lorentz invariance. On the other hand, CPT invariance is not sufficient for out-of-cone Lorentz invariance. Theories that violate CPT by having different particle and antiparticle masses must be nonlocal.Comment: Minor changes in the published versio

    Exploring the van der Waals Atom-Surface attraction in the nanometric range

    Get PDF
    The van der Waals atom-surface attraction, scaling as C3 z-3 for z the atom-surface distance, is expected to be valid in the distance range 1-1000 nm, covering 8-10 orders of magnitudes in the interaction energy. A Cs vapour nanocell allows us to analyze the spectroscopic modifications induced by the atom-surface attraction on the 6P3/2->6D5/2 transition. The measured C3 value is found to be independent of the thickness in the explored range 40-130 nm, and is in agreement with an elementary theoretical prediction. We also discuss the specific interest of exploring short distances and large interaction energy.Comment: to appear in Europhysics Letter

    Local exchange-correlation vector potential with memory in Time-Dependent Density Functional Theory: the generalized hydrodynamics approach

    Full text link
    Using Landau Fermi liquid theory we derive a nonlinear non-adiabatic approximation for the exchange-correlation (xc) vector potential defined by the xc stress tensor. The stress tensor is a local nonlinear functional of two basic variables - the displacement vector and the second-rank tensor which describes the evolution of momentum in a local frame moving with Eulerian velocity. For irrotational motion and equilibrium initial state the dependence on the tensor variable reduces to that on a metrics generated by a dynamical deformation of the system.Comment: RevTex, 5 pages, no figures. Final version published in PR

    Quark-gluon vertex in arbitrary kinematics

    Get PDF
    We compute the quark-gluon vertex in quenched lattice QCD, in the Landau gauge using an off-shell mean-field O(a)-improved fermion action. The complete vertex is computed in two specific kinematical limits, while the Dirac-vector part is computed for arbitrary kinematics. We find a nontrivial and rich tensor structure, including a substantial infrared enhancement of the interaction strength regardless of kinematics.Comment: 6 pages, 8 figures, talk by JIS at QCD Down Under, Adelaide, 10-19 March 200
    • …
    corecore