16 research outputs found

    Differential Calculi on Associative Algebras and Integrable Systems

    Full text link
    After an introduction to some aspects of bidifferential calculus on associative algebras, we focus on the notion of a "symmetry" of a generalized zero curvature equation and derive Backlund and (forward, backward and binary) Darboux transformations from it. We also recall a matrix version of the binary Darboux transformation and, inspired by the so-called Cauchy matrix approach, present an infinite system of equations solved by it. Finally, we sketch recent work on a deformation of the matrix binary Darboux transformation in bidifferential calculus, leading to a treatment of integrable equations with sources.Comment: 19 pages, to appear in "Algebraic Structures and Applications", S. Silvestrov et al (eds.), Springer Proceedings in Mathematics & Statistics, 202

    NLS breathers, rogue waves, and solutions of the Lyapunov equation for Jordan blocks

    No full text
    The infinite families of Peregrine, Akhmediev and Kuznetsov–Ma breather solutions of the focusing nonlinear Schrödinger (NLS) equation are obtained via a matrix version of the Darboux transformation, with a spectral matrix of the form of a Jordan block. The structure of these solutions is essentially determined by the corresponding solution of the Lyapunov equation. In particular, regularity follows from properties of the Lyapunov equation

    Matrix generalizations of integrable systems with Lax integro-differential representations

    No full text
    We found matrix integro-differential Lax representations for Davey-Stewartson systems (DSI, DS-II, DS-III), (2+1)-dimensional generalizations of Chen-Lee-Liu equation and its higher symmetries. In particular, we obtain (2+1)-dimensional generalizations of modified Korteweg-de Vries equation, Nizhnik equation and so etc. We also propose some matrix multidimensional generalizations of Burgers equation

    "Riemann equations" in bidifferential calculus

    No full text
    We consider equations that formally resemble a matrix Riemann (or Hopf) equation in the framework of bidifferential calculus. With different choices of a first-order bidifferential calculus, we obtain a variety of equations, including a semi-discrete and a fully discrete version of the matrix Riemann equation. A corresponding universal solution-generating method then either yields a (continuous or discrete) Cole-Hopf transformation, or leaves us with the problem of solving Riemann equations (hence an application of the hodograph method). If the bidifferential calculus extends to second order, solutions of a system of "Riemann equations" are also solutions of an equation that arises, on the universal level of bidifferential calculus, as an integrability condition. Depending on the choice of bidifferential calculus, the latter can represent a number of prominent integrable equations, like self-dual Yang-Mills, as well as matrix versions of the two-dimensional Toda lattice, Hirota’s bilinear difference equation, (2+1)-dimensional Nonlinear Schrödinger (NLS), Kadomtsev-Petviashvili (KP) equation, and Davey-Stewartson equations. For all of them, a recent (non-isospectral) binary Darboux transformation result in bidifferential calculus applies, which can be specialized to generate solutions of the associated "Riemann equations." For the latter, we clarify the relation between these specialized binary Darboux transformations and the aforementioned solution-generating method. From (arbitrary size) matrix versions of the "Riemann equations" associated with an integrable equation, possessing a bidifferential calculus formulation, multi-soliton-type solutions of the latter can be generated. This includes "breaking" multi-soliton-type solutions of the self-dual Yang-Mills and the (2+1)-dimensional NLS equation, which are parametrized by solutions of Riemann equations
    corecore